
Refinement and emergency versus design and
predetermination

Andrej Lúčny

Institute of Informatics FMFI UK Bratislava and MicroStep-MIS

e-mail: andy@microstep-mis.com
web: http://www.microstep-mis.sk/~andy

Keywords: reactive agent, space, refinement, emergency, multi-agent systems

Here we summarize our experience with building systems based on reactive agents and
their interaction via indirect communication. Our primary aim was to develop
monitoring and control systems. Because of their real-time nature we selected a QNX4
platform. This platform provided us not only with sound real-time (with latency 2µs)
which run on usual machines like PC, but also with multitasking which enables
hundreds of processes and a unique data exchange model based on blocking message
passing1. At this point, we encountered difficulties (like full-duplex data exchange
between two servers) with factory-recommended architecture (so called pyramidal
client-server architecture), and for that reason since 1996 we have been using our own
architecture based on non-blocking message passing and indirect communication.
Unlike the usual solutions of non-blocking message passing, which are based on the
communication through a special server called a message queue, we used an alternative
approach based on another special server called a space. This server has an ability to
contain named data drops (called blocks) with given time validity and its clients can
write to blocks and read them as well as they can get a notification about their change
(called a trigger)2. (The last mentioned service is not inevitable since clients are usually
woken up by the notification from a timer. However, it can be very useful when the
data, which has to be processed swiftly, is coming in irregular instants of time and there
is not enough power to cover the redundancy of analogical regular processing.) As a
result, each block can be shared by more producers and consumers (this is the
difference in comparison to the concept of the message queue).

agent agent

blocks in space

read write

data flow P

blocks in space

agent agent

write

data flow

read
proxy

notification
by trigger

Pproxy

notification
by timer

 In this way we eliminated all the difficulties associated with the pyramidal

1 So called SRR model
2 This concept of communication is sometimes called stigmergic communication and as we found later, it
is similar to a type of data exchange, known as LINDA tupple space, which can be found in a parallel
programming domain.

client-server architecture, as the space became the only server in the system. All other
process turned to clients of space and their natural form lay in a simple sense-select-act
cycle (reading from space, computing reaction, writing to space) activated by a
notification from a timer or a trigger (and in special cases also from a system device or
from the user interface). We realized that this concept is in fact a kind of application of
a certain multi-agent system (i.e. distributed system) for building single-node multi-
process systems, conformable to slogan “computer is a network”. Therefore we
designated the space clients as agents. Further, because of the simplicity of the select
phase, we attributed to them the characteristic adjective: reactive.

Sense
Select
Act

Initialization

notification
read
ok & data

write & data
ok

 This architecture provided us with many advantages (though it also brought
some problems as the absence of 100% reliable mechanism of synchronization among
processes). The most important advantage was free communication among producers
and consumers.

producer

consumers

producer

consumers producers consumers

traditional client-server agent-space

Consequently it was possible to restart a producer without any impact on its

consumer (useful for recovery from errors), or replace a producer by another one (useful
for ability to configure). The next positive (though controversial) feature was implicit
sampling of produced data when a consumer was too slow to undertake them all. This
sampling is based on the fact that producers overwrite data in blocks regardless
consumers have read them or not3. Thus the real-time operation is supported: the data,
which cannot be processed quickly enough, is lost4.

3 On the other hand, if a consumer receives more notifications during single course through its cycle, they
are handled as a single notification.
4 This feature is unacceptable for some applications (like counting money) and very profitable for other
domains (like control systems of mobile robots). In practice, its negative impact is usually eliminated by
real-time (so the feature and real-time support each other).

10,11,12,13,14

slow

fast 10,11,12,13,14

10, 12, 14
Additional benefit resides in the separation of a domain-dependent code from a

data-exchange code and in normalization of data-exchange interfaces (reuse-ability).
However, the most interesting change happened with the development process.

As our systems have usually tens sometimes even hundreds of versions, the ability to
modify is a crucial factor for us. In fact, this ability improved when we expressed the
global system behavior by implementation of a local behavior of many reactive agents5
manipulating with blocks (and in special cases also with system devices and the user
interface). Of course, a typical modification was usually realized by one of the
following ways:

- by adjustment of certain agent codes
- by development of new agents which alternate some former ones
- by development of some additional agents which profit from the former agents

but have no impact on their operation (they implement additional features only)
However, we encountered also cases when a much more advantageous choice was:

- to develop new agents which are able to influence behavior of the former ones in
a proper manner (without an adjustment of their code).

This influence is realized by writing to former blocks to which some former agents are
“sensitive”6. This strategy is effective even in the case of the correction of mistakes.

Let us demonstrate it on a live example. We had to develop a system which
collects periodic data (available without gaps in the centre as soon as possible). The
system was supposed to call through several dial-up PSTN lines to get data from many
outstations connected to the GSM network. Under such physical conditions the
collection is quite unreliable for many reasons (the overloaded GSM network,
overloaded router between PSTN and GSM or noise in the GSM network). On the other
hand, the outstations (running on a solar panel and an accumulator) are almost reliable
and contain data for 99% of the measuring periods. Thus it was possible to download
most of the data to the center; however the system had to take into consideration that an
individual download can fail owing to connection failures and interruptions in any
moment of data retrieval or due to noise on a line (corrupted request or corrupted
response). Of course, the system had to be resistant against such exceptional states as
the failure of some PSTN lines or the absence of data on a new station. Moreover, the
amount of PSTN lines was much less than the amount of outstations and the duration of
lines occupation had to be as short as possible.

We designed the system as a complex of a space server and reactive agents. The
space contained data requests for a particular station and time period, locks for
individual stations and downloaded data. There was an agent called a requester which
was invoked at the end of each period and it generated requests for that period (each

5 Regarding programs, we used tens of agents. Regarding processes, their number is from tens to
hundreds.
6 This trick is quite similar to Brook’s subsumption architecture, however unlike his suppressor and
inhibitor our kind of influence is not so deterministic: despite the writing to a block by a new agent, the
former producers are still active and compete with it.

request had certain long-term validity e.g. one day). Further each PSTN line was
controlled by an agent called a downloader. These downloaders were regularly invoked
and each of them was supposed to find in the space an unanswered valid request. If such
a request was found, they tried to lock the station associated with it7. In the case the
station had not been locked yet, the agent collected all requests related to the station,
dialed the station and after successful connection it tried gradually to download data for
each requested period. Those requests, for which the data was downloaded correctly
(regarding CRC) or a correct not available response was received, were removed from
the space whereas the validity of others was adjusted in the following way: its start was
shifted to the next time period and the end remained as it was. Thus after a certain
period chronically unsuccessful requests became invalid and they were removed from
the space automatically. Finally, there was an agent which undertook downloaded data
from the space and stored them in a database.

requester

downloaders

lines

requestes and downloaded data in space

station1 station2 station3 station4
10:45
10:30
10:15
10:10

database

The system was running in a good way, but we found that it downloaded only

97% of the data in spite of the fact that long-term log-files at outstations contained more
than 99%. It was clear that there had to be a mistake in the implementation of the
downloader since its design should theoretically guarantee downloading of all the data
available at the stations. This situation was probably caused by an unknown factor
which was not taken into consideration. Logically we had to reveal this factor and
adjust the code of the downloader. However, we did not. It was much easier to add
another agent called a sweeper. At the end of a day, this new agent generated requests
for missing data for those stations which data was almost complete but still contained
some gaps (regardless the fact that some of this missing data could have been already
testified as not available). In this way the sweeper intruded into the job of the requester
and forced downloaders to regard these requests as generated by the requester. As a
result of this modification, data completeness achieved the expected 99%. Thus we
developed a correct system, though it consisted of two not completely correct parts.

7 To realize a lock, we need ability to perform more uninterrupted operations over space; particularly in
this case one read and one write operation.

requester dowloader

request

requester dowloader

request

sweeper

In general, instead of regarding the design of local behavior of individual agents,

it is sometimes more effective to examine the global behavior of the whole system (i.e.
how blocks are changing in the space) in the way as if we lost control over the system.
Consequently the derived modification is nothing but an ordinary patch which could
even insult our belief of how computer systems should be constructed. In fact, such
modifications represent more refinement than design and its correctness cannot be
logically derived, only tested after implementation. However, why should not we accept
a more effective strategy? I think the discussed strategy is the most natural one for
system development with the presented architecture.

SYSTEM

time

TEST 1

TEST 2

TEST n

STAGE 1 STAGE 1

STAGE 2

STAGE 1

STAGE 2

STAGE n

OKOK OKOK

OKOK OKOK

OKOK

OKOK

0 Increment 1 Increment 2 Increment n

…
…

…

Result

Finally, why should we use such an architecture? Just take into consideration in

our example how implicitly and at no cost we achieved a resistance of the system to
such states as a PSTN line failure or excess of outstations in the network (when the
system operates, only the data presence in the centre is delayed). These features simply
“emerged” thanks to the nature of the mentioned architecture.

[1] Brooks R.: Cambrian Intelligence. The MIT Press, Cambridge, Massachusetts, 1999
[2] Valckenaers P., Van Brussel H., Kollingbaum M., Bochman O.: Multi-agent Coordination

and Control Using Stigmergy Applied. In: Multi-Agent Systems and Applications (Luck
M., Mařík V., Štěpánková O. Trappl R., eds.), ACAI, Praha, 2001

[3] Kelemen J.: From statistics to emergence -- exercises in systems modularity. In: Multi-
Agent Systems and Applications (M. Luck et al., eds.). Springer, Berlin, 2001

[4] Lúčny A.: Spaces and reactive agents under QNX4. QNX Tools and Technologies,
Bratislava, 2001

[5] Waldo J.: Mobile Code, Coordination and Changing Networks. Concoord, Lipari, 2001

