
CLWAR/EURON Workshop on Robots in Entertainment, Leisure and Hobby
December 2 – 4, 2004, Vienna, Austria

BUILDING CONTROL SYSTEM OF MOBILE ROBOT WITH AGENT-SPACE
ARCHITECTURE

Andrej Lúčny

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
MicroStep-MIS

Abstract

Agent-Space architecture was proposed for building
of complex systems [8]. According to this
architecture, a control system is implemented as a set
of reactive agents which communicate indirectly
through another entity called space. It is derived from
subsumption architecture and related philosophy of R.
Brooks and M. Minsky but it employs terms of
modern approach of multi-agent systems. However,
agents do not represent cooperating robots here, but
units of a control system of a single robot. The
presented architecture can be considered as an
application of agent-oriented programming in domain
of mobile robotics. Its most interesting features are
dataflow which supports a many:many relationship,
implicit sampling, high ability to modify and ability
to model competition among internal structures. The
key idea of the architecture is to allow only indirect
communication among agents. It is realized by
reading and writing named data. The data are stored
as blocks in the space which also controls their time
validity. Each such a block realizes a dataflow among
several agents. It can be read and/or written by
several of them. How do agents know about presence
of particular data (which should be processed by
them) in the blocks? There are two solutions: an
agent can regularly read blocks (and process what is
stored there regardless it is something new or not) or
it can receive a notification about their changes.

We demonstrate capabilities of the architecture by
implementation of a control system for a mobile
robot which follows a ping-pong ball. An incremental
development of the control system is presented. We
start with a chain of reactive agents which model a
traditional pipe-line structure of image processing
and action selection. Even this structure is not a pure
equivalent of the traditional approach. But
advantages appear just when we try to improve
capability of the robot to operate under various
lighting conditions. We clone a part of the control
structure to run its several instances in parallel, each
using a different configuration for individual
condition. Unlike usual approaches these instances
do not cooperate but they compete. However, there is
no negative impact of the competition to the resulting
behavior of the robot. The only result is that it works
under more general conditions. We introduce some

further modifications of the control system.

Keywords : reactive agents, indirect communication,
multi-agent systems, agent-oriented programming,
subsumption architecture

1. Agent-oriented programming

Subsumption architecture [1,2] invented in eighties
and its later derivates are still inspiring for domain of
mobile robotics. However, the original framework for
design based on augmented finite-state automata,
wires, suppressors and inhibitors is not attractive
nowadays and we are able to use terms of more
modern approaches. The most suitable approach - in
our opinion – is agent-oriented programming (AOP).
We can consider AOP as a next generation of
programming which is coming after structured and
object-oriented programming. The key difference
among these three is a kind of transferring real world
entities into the computer. The oldest approach is
based on transferring of passive entities. They are
represented by records and they can be just
manipulated. The next approach provides transfer of
reactive entities - objects, which are able to act but
only when they are called. AOP provides a next step
and transfers proactive entities – agents [3], which
are constantly active and need not to be called. The
difference is demonstrated in Fig. 1.

Fig. 1. A funny example of a passive, reactive and

proactive entity. (A wall cannot injure you; just
you can injure yourself on a wall. A rake can
injure you, but at first you have to step on it.
However, a dog can suddenly injure you without
any your activity)

2. Agent-Space Architecture

We use AOP to define an own modern derivate of
subsumption architecture. Within the architecture,

CLWAR/EURON Workshop on Robots in Entertainment, Leisure and Hobby
December 2 – 4, 2004, Vienna, Austria

systems consist of many reactive agents and one
space. Space is a server with an ability to contain
named data units (called blocks) with a given time
validity. Reactive agents are its clients which can
write to blocks, delete them and read them as well as
they can get a notification about their change (called
a trigger). The notification service is not inevitable
since agents are usually woken up by the notification
from a timer as displayed in Fig. 2a. However, it can
be very useful when an agent has to process some
data swiftly, the data is coming in irregular instants
of time and there is not enough power to cover the
redundancy of analogical regular processing (Fig. 2b).
Unlike in most of other AOP architectures, direct
communication among agents is not allowed and we
rely on indirect (sometimes called stigmergic)
communication exclusively.

agent agent

blocks in space

read write

data flowP
proxy

T
timer

P
proxy

T
timer

a)

P

blocks in space

agent agent

write

data flow

readproxy

notification

trigger registration

b)

Fig. 2. A dataflow among agents. a) A dataflow from

an agent A through space to an agent B which is
activated regularly by a timer. b) An analogical
dataflow to the agent B which is activated by a
trigger, i.e. immediately when data are written to
the space.

Sense
Select
Act

Initialization

notification
read
ok & data

write & data
ok

Fig. 3. A typical structure of a code of reactive agents

The reactive agents perform a simple sense-select-act
cycle (reading from space, computing a reaction,
writing to space). Any course through the cycle is
activated by a notification from a timer or a trigger
(and in special cases also by a device or by a user).

There is no requirement to use a specific algorithm
during the select phase like planning or learning. We
prefer to use an ordinary code there and try to
achieve a more complex behavior rather by
interaction among agents than due to a clever
“cognitive” component put into agents (therefore we
attributed to the agents the adjective: reactive). The
usual code structure of a reactive agent is depicted in
Fig. 3.

This architecture exhibits two main features. The
first one is a free communication among producers
and consumers. Unlike other concepts of indirect
communication, e.g. LINDA tupple space [4], we do
not require calling an operation for creation of a
block before its use; the block is created by the first
write operation. Blocks can also become empty when
their validity expires. Thus agents have to handle
situation when they read a non-existing or empty
block; e.g. each agent specifies an individual default
value which is used instead of the missing value. Due
to these arrangements we are able to realize dataflow,
which supports a many:many relationship, in a
comfortable way (Fig. 4).

producer

consumers

producer

consumers

producers consumers

traditional client-server agent-space

Fig. 4. A comparison of dataflow which is typical of
the agent-space architecture and other approaches.
The same data can be produced by many
producers and processed by many consumers.

Consequently it is possible to restart a producer
without any impact on consumers (useful for the
recovery from errors), or to replace a producer by
another one (useful for the ability to configure).

10,11,12,13,14

slow

fast 10,11,12,13,14

10, 12, 14

A

BC

Fig. 5. An implicit sampling: Agents A and B
perform the same code engaged in data
distribution through a network. However the
agent A, working on a fast medium, distributes
all the data written by the agent C, while the
agent B, working on a slow medium, is able to
process just every second data.

The second main feature is implicit sampling. It is
based on the fact that producers overwrite data in
blocks regardless of whether consumers have read

CLWAR/EURON Workshop on Robots in Entertainment, Leisure and Hobby
December 2 – 4, 2004, Vienna, Austria

them or not. Additionally, if a consumer receives
more notifications during single course through its
cycle, it recognizes them as a single notification.
Implicit sampling appears when a consumer is too
slow to undertake all data generated by their
producer (Fig. 5). Therefore the implicit sampling is
important for the real-time operation: the data, which
cannot be processed quickly enough, are
automatically lost (sampled). This feature is
unacceptable for some applications (like counting
money) but very profitable for other domains (like
control systems of mobile robots).

Additional benefit of the agent-space architecture
resides in the separation of a domain-dependent code
from a data-exchange code and in the unification of
data-exchange interfaces (reusability).

Regarding development process, agent-space
architecture is designed for systems which have tens,
even hundreds of versions. It enables us to consider
the modification ability as a crucial factor of
development. A simple modification is usually
realized by one of the following ways:
• by adjustment of certain agent codes
• by development of new agents which alternate

some former ones
• by development of some additional agents which

profit from the former agents but have no impact
on their operation (they implement additional
features only)

On the other hand, we are also able to use the same
strategy as subsumption architecture:
• to develop new agents which would be able to

influence behavior of the former ones in a proper
manner (without an adjustment of their code).

readwrite

readduplication

suppression

S readwrite(prio)

write(prio+1)

inhibition

I
read(default)

write(prio)

delete(prio+1)

Fig. 6. Implementation of subsumption mechanisms

in agent-space architecture

This influence can be realized by writing to former
blocks to which some former agents are “sensitive”
(Fig. 6). However, unlike Brooks’ suppressor and
inhibitor, our kind of influence is not based on strict
priorities. Despite writing to a block by a new agent,
the former producers remain active and compete with
it. Of course, the priorities can be added, e.g. we can

define a priority for any block in space and discard
those write operations which try to overwrite the
current value by a value with a lower priority. (Thus
priority will be an additional parameter of the write
and delete operations.) However, we are still able to
model competition among agents (which operate on
the same level of priority), while subsumption
architecture is not able to provide the same.

3. Incremental development and competition

In nature, the competition among internal units seems
to be an important creative principle. Sometimes we
can even observe its presence in global behavior of
living systems, mainly when we let them operate
under exceptional or artificial conditions. Therefore it
is acceptable also for artificial systems which follow
ideas of biomimetics. However, can it be also
profitable? Well, we are not sure – it is not possible
to answer this question without many projects which
will try to use competition for building of artificial
systems. Anyway, we can offer an architecture which
supports this elaboration. Further we are able to
demonstrate several simple examples. We present one
of them in the following.

We have the following task: to develop a mobile
robot which follows a ping-pong ball. The robot is
equipped with a camera scanning a scene in the front
of it and motors which allow robot to rotate on the
spot, to move forward and backward or to stop.

Fig. 7. A simple robot following a ping-pong ball

The traditional control system of such a robot is
based on a pipeline which connects input images
with output moves through several phases of image
processing:
− color image is converted into greyscale
− Sobel’s operator is applied
− points with intensity higher than a given

threshold are selected to represent thick edges
− thick edges are turned to thin ones
− points of thin edges are represented as a set of

segments
− potential centers of circles are recognized and

CLWAR/EURON Workshop on Robots in Entertainment, Leisure and Hobby
December 2 – 4, 2004, Vienna, Austria

completeness of their associated circular lines is
checked; position and size of a circle is
recognized

− if the position is too on the left, we rotate to left,
if it is too on the right, we rotate to right.
Otherwise, if the recognized circle is too small,
we move forward, if it is too big, we move
backward.

If we use agent-space architecture, we can start from
the same organization. However, we have to model
the pipeline to a sequence of agents which exchange
data through intermediate blocks (Fig. 8).

Ca
me

ra

rawImg

BW

bwImg

So
be

l

sobelImg

Th
re

sh
ol

d

thickEgdes

Th
in

ni
ng

thinEdges

Ed
ge

s

Edges
Ci

rc
le

Pos,
Size

Fo
llo

we
r

Forward,
Turn

To
we

r

Fig. 8. A pure pipeline realized by agent-space
architecture

At this stage of development, our control system is a
pure pipeline realized in an unconventional manner.
The only difference is that its computation does not
run sequentially through the individual phases of
processing but each phase is running in an own
thread – as it is represented by an individual agent.
Such an agent is running a cycle which is invoked by
a timer with a given frequency or by a trigger
indicating changes of some particular blocks. For
example, the agent Camera is running it cycle with a
frequency which is equal to the refresh rate of the
camera, while the agent Sobel employs a trigger on
the block containing the grayscale image. In principle,
all agents except Camera could be invoked by trigger,
however we have to take into acount that - in
comparison with the refresh rate of the camera -
some of them are too slow. Therefore we use timers
also for agents Threshold and Follower and we set
them to lower frequencies. Also we use a timer for
the agent Tower and we set it to a frequency which is
appropriate for physical capability of communication
between the control system and motors. Although it
is not necessary to use these timers – due to implicit
sampling a slow agent simply looses some
notifications and treats as much as possible – it is
better to let the system to be sometimes idle.

Such a control system follows the ball quite
successfully. However, we will find out soon that its
success depends on lighting conditions. The system
requires an improvement and at this moment we start
to get a profit from the employed architecture. The
pipeline can be easily turned into a more complicated
structure which reflects that the optimal threshold for
the edge detection is varying (Fig. 9). We are able to
realize this improvement without any modification of
the formerly developed agents except the agent
Threshold. It is necessary to modify this agent

because the threshold value was originally a part of
its internal state, i.e. hidden to other agents. When we
would like to prevent similar complications, we have
to put such parameters into blocks from beginning. In
general we can require revealing any information
which can persist from one course through agent
cycle to the next one. Agents which follow this rule
are so-called purely reactive.

Ca
me

ra

rawImg

BW

bwImg

So
be

l

sobelImg

Th
re

sh
ol

d

thickEgdes

Th
in

ni
ng

thinEdges

Ed
ge

s

Edges

Ci
rc

le

Pos,
Size

Fo
llo

we
r

Forward,
Turn

To
we

r

levelintensity

In
ten

sit
y

Le
ve

l

Fig. 9. An example of profit from pure reactivity

However, our solution is still not perfect since it is
difficult to calculate the optimal value of threshold as
a global parameter of image: the left part can be light
and the right part dark – thus we will need two
different thresholds, not their average. We need to let
several different thresholds to compete. Thanks to
our architecture we can realize it easily: we just
launch agents from Threshold to Circle several times
in parallel (Fig. 10).

Ca
me

ra

rawImg

BW

bwImg

So
be

l

sobelImg

Th
re

sh
ol

d

thickEgdes

Th
in

ni
ng

thinEdges
Ed

ge
s

Edges

Ci
rc

le

Pos,
Size

Fo
llo

we
r

Forward,
Turn

To
we

r

Th
re

sh
ol

d

thickEgdes1

Th
in

ni
ng

thinEdges1

Ed
ge

s

Edges1

Ci
rc

le

Th
re

sh
ol

d

thickEgdes2

Th
in

ni
ng

thinEdges2

Ed
ge

s

Edges2

Ci
rc

le

level

level1

level2

Fig. 10. An example of competition

In this way we implement the competition by writing
of various recognized positions and sizes into a
common block. Of course, this can work well only if
the agent Circle write nothing into the block when it
is not able to recognize something reasonable – it
must not write a “bad value” there. As a result, the
reasonable value should have certain time validity -
otherwise we still recognize a ball after it is removed
from the scene. Then - of course – the agent Follower
needs to handle the problem of reading an empty

CLWAR/EURON Workshop on Robots in Entertainment, Leisure and Hobby
December 2 – 4, 2004, Vienna, Austria

block, for example by using “no ball” as a default. In
general, this arrangement (writing nothing instead of
“bad value”, specifying certain time validity and
reading with a default) is the best kind of
manipulation with blocks within agent-space
architecture.

Another rule, which we can derive from this
situation, is that the particular names of blocks which
agents manipulate should be submitted as their
parameters. Then we can easily re-use the agents and
let them to operate over blocks which have the same
meaning but different names.

Anyway, now we have implemented quite a
robust system which operates under various lighting
conditions (Fig. 11).

Fig. 11. An original image (negative) and results of
competing recognizers with various thresholds

Since there is no priority and the “winning”
proposal of position and size is anyone which is
undertaken by the agent Follower, it can easily
happen that the acquired values vary. This variation
can be even significant – e.g. when there are two
balls in the scene. Of course, this variation could be
suppressed by adding priorities. However, much
better solution can be realized by adding a new
purely reactive agent which represents concentration
(Fig. 12). That agent undertakes varying values, but it
selects one of them and remembers it. Then the agent
ignores any value which differs too much from the
remembered one. On the other hand, if the
undertaken value differs just a little, it is taken as a
new selection. Thus the agent filters the significant
variation and provides concentration on one ball.

Pos
Concentration

Pos1

Follower

Memory

Circle

Circle

Circle

Fig. 12. An example of variation filtering

Since the remembered value has a persistent
character, we store it in a block. Thus agent
Concentration has to read the same value which it
has written during the previous course through its

cycle. This seems to be redundant but it brings two
advantages. At first, we can use time validity to
define such a timeout that its expiration indicates loss
of the selected ball and the agent should look for
another one. Secondly, we are able to remove content
of this block when we want to force the agent to deal
with another ball.

In this way, we could follow incrementally to
more and more complicated solutions which
successfully handle more and more conditions.

4. Conclusion

We introduced an architecture which can be
considered as a modern reformulation of inspiring
but old-fashioned subsumption architecture. The
reformulation was based on agent-oriented
programming with focus on indirect communication
among agents. We discussed main features of the
architecture. We presented how mechanisms of
subsumption can be expressed within the architecture,
thus we found that any solution based on
subsumption architecture can be transferred into our
architecture. Additionally, we demonstrated that our
architecture is able to model not only priority-based
cooperation but also competition among internal
units. Some advantages and important details of this
approach were demonstrated on a particular example.

5. References

[1] Brooks, R (1991). “Intelligence without

representation”, Artificial Intelligence 47, pp.
139-159

[2] Brooks, R. (1999). “Cambrian Intelligence”.
The MIT Press, Cambridge, Massachusetts

[3] Doran, J. (1992). “Distributed AI and its
Applications”. In: Advanced Topics in
Artificial Intelligence (Mařík V., Štepánková O.,
Trappl R.) Springer-Verlag, Berlin, pp. 368-372

[4] Gelernter, D. (1985). “Generative
Communication in LINDA”. ACM on
Transactions on Programming Languages
and Systems, Volume 7(1), pp. 80-112

[5] Jennings, N. (2000). “On agent-based software
engineering”. Artificial Intelligence 117, 2000,
pp. 277-296.

[6] Kelemen, J. (2001). “From statistics to
emergence - exercises in systems modularity”.
In: Multi-Agent Systems and Applications,
(Luck, M., Mařík, V., Štepánková, O. Trappl, R.),
Springer, Berlin, pp. 281-300

[7] Lúčny, A. (2004). “Refinement and Emergency
versus Design and Predetermination”. In:
Proceedings of IWES 2004 (Ueda K.,
Monostori L., Márkus A.), Budapest, pp. 13-18

[8] Lúčny, A. (2004). “Building complex systems
with Agent-Space architecture”. Computing
and Informatics, Vol. 23, pp. 1001-1036

