
1

Multi-agent approach
to control

Andrej Lúčny

MicroStep-MIS & DAI FMFI UK Bratislava

andy@microstep-mis.com

http://www.microstep-mis.com/~andy

/34

2

• Escaping from hardware layout
• Multi-agent modularity
• Agent-space architecture
• Indirect communication
• Data flow many:many
• Time validity
• Implicit sampling
• Data packages
• Subsumption and priorities
• Comparison with iConnect
• Integration of traditional AI
• An example

/34

3

Future of control

• Structure of control is exclusively
implemented by software
However:

• Layout of the software modules still mimics
hardware layout
Question:

• Can we imagine more sophisticated and
profitable layout ?

/34

4

Traditional control

• modules have fixed number of inputs,
outputs and parameters

• one output is linked to several inputs
• transformation of inputs to outputs is

performed by a scheduler and it is often
uninterruptible

Modul1

Param1 = val1

Modul2

/34

5

Multi-agent modularity

• An alternative solution is application of
multi-agent modularity which turns
modules to agents and links to
communication among them

• In this way we give to control system the
same modularity as typical for distributed
and decentralized systems

/34

6

Multi-agent system example

• Typical example: robot-soccer

/34

7

Multi-agent system

• It would be too difficult to write a program
which controls all the players.

• It is much easier to code programs for
individual players and let the team control
to emerge from their interaction

• Such interacting programs are called agents

/34

8

Decentralization

Such solution is decentralized:
• for example, if we remove midfielder from

the team, striker does not stop (endlessly
waiting for a pass from the removed
midfielder), just probably scores a goal less
frequently. Even if the striker never got a
pass, he is still moving and ready to shoot
ball whenever it is available to him.

/34

9

Nature of agents

• agents can be implemented as objects
equipped with an own thread of control and
a mechanism of a mutual data exchange
including sensation and action of the system
environment

/34

10

Nature of agents

• each agent is endlessly
running a sense-select-act
cycle. Any course through
this cycle calculates some
actions upon information
sensed from environment or
provided by other agents

Sense
Select
Act

Agent

timer,
trigger

/34

11

Communication among agents
The communication mechanism can be based on
• direct message passing
• indirect communication through a more or less

sophisticated blackboard (called also space)

/34

12

Back to architecture of control

• Can we use the same modularity for
implementation of one player ?
(i.e. on lower level)

• Can we organize internal modules of one player in
similar way as cooperating players in the team ?

• Can we use multi-agent modularity for building of
control ?

Yes, we can
/34

13

Agent – Space architecture

We transform:
• modules to agents
• links among modules to indirect communication

via blocks in space (on blackboard)

/34

14

Indirect communication

Agents:
• can read, write or delete particular blocks in space
• know nothing about other agents, just know names

and structure of the blocks they manipulates with
• perform their code on timer and/or trigger (a

change of selected blocks in space)

/34

15

Indirect communication
Details of read, write and delete operations are:
• no method for block creation
• reading of non-existing blocks is handled by returning

a default value specified by reader
• value stored in block can have a limited time validity

specified by writer; after its expiration the block
becomes automatically empty

• value stored in block can have a priority specified by
writer; such value overwritten only by value with
same or higher priority

• space has no knowledge about value meaning; the
reader is responsible for correct interpretation

/34

16

public class Agent2 extends Agent {

int i;

public void init(String args[]) {
attachTrigger("a");

}

public void senseSelectAct() {
i = (Integer) read("a",-1);
System.out.println("read "+i);

}

}

package com.microstepmis.agentspace.demo;
import com.microstepmis.agentspace.*;

public class Agent1 extends Agent {

int i = 0;

public void init(String[] args) {
attachTimer(1000);

}

public void senseSelectAct() {
System.out.println("write: "+i);
write("a",i++);

}

}

public class Starter {
public static void main(String[] args) {

new SchdProcess("space","com.microstepmis.agentspace.SpaceFactory",new String[]{"DATA"});
new SchdProcess("agent1","com.microstepmis.agentspace.demo.Agent1",new String[]{});
new SchdProcess("agent2","com.microstepmis.agentspace.demo.Agent2", new String[]{});

}
}

Code example

/34

17

Data flow many:many

• each block can be written by many producers and
read by many consumers

• consumers do not know how much producers
generates the value or from whom the read value
is coming

producers consumers

block in space

/34

18

Time validity
• When we have more producers, neither of them

can write “bad values”
• Rather such producer does not write a value at all
• But then it can happen that an old value persists in

space and it is taken by consumers as valid
• Ideal solution is to define time validity for any

written value. After its expiration, the value
disappears from space (without agent intervention)

• Thus it can happen that block is empty, so
consumer have to handle this state. Ideal solution
is to use a default value specified when consumer
calls read operation /34

19

Implicit sampling

• Since write operation overwrites data stored in a
block regardless their consumers have undertaken
them or not, any data flow is inherently
(potentially) sampled.

10,11,12,13,14

fast agent

fA(10), fA(11), fA(12), fA(13), fA(14)

fB(10), fB(12), fB(14)

A

B
C slow agent

/34

20

Why no packages

• What to do if data are too frequent to be
communicated one by one ? What to do if no data
can be lost by implicit sampling ?

• One solution: turn blocks to queues, process data
in packages

• Problem 1: not clear semantics of more producers
• Problem 2: more complicated processing

(additional loops)
• Solution: Rather special triggers than packages, or

multiply blocks
/34

21

Soft crash landing

• each agent can be restarted without impact on
system operation, mainly if they have no inner
state (rather they can have analogical information
in space)

• thus we can easily to add subsystem which starts
crashed agents again and thus provide recovery
from errors

• (each application specific code is concentrated in
agents, space is independent from application
domain)

/34

22

Subsumption
• a design principle of

control which mimics
simplified biological
evolution

• any complex control has
an origin in a simpler
ancestor

• descendant mechanism
subsumes the mechanism
of its ancestor

• higher levels rather inhibit
and regulate than active
the lower levels

layer 1

layer 2

layer 3

layer N
…

…
…

/34

23

Question: How could the newer levels influence the
older ones? The older levels have been designed for
particular use and have no interfaces for future
development!

Answer: they have to have modular structure which
enables it !

Solution: concept of indirect communication is
suitable to provide that

Subsumption

/34

24

Priorities

• However, blocks need to be associated also with
priorities

readwrite

read

readwrite(prio)

write(prio+1)

read(default)

write(prio)

delete(prio+1)

monitoring suppression inhibition

/34

25

Integration of traditional AI

Agent modularity
• perfectly separates codes of modules
• enables to integrate slow modules into the system
Thus it is suitable to integrate slow cognitive

structures on higher levels which subsumes fast
but just reactive processing on lower levels

• reinforcement learning
• neural networks
• rule-based systems

/34

26

C
om

parison to iC
onnect

Arrays of basic typesAny data structures

?Recovery from errors

MultiComBlock

Data packages onlyNo data packages

Explicit samplingImplicit sampling

Timestamp onlyTime validity of data

Multiplexer,
?

More producers of block,
priority

Real-time, combining
slower with faster - OK

Real-time, combining
slower with faster - OK

SignoGraphAgent (or several agents)

/34

27

An example
A mobile robot following a ping-pong ball

/34

28

Ca
me

ra BW

So
be

l

Th
re

sh
ol

d

Fi
lte

r
-iz

ol

Eg
de

s

Ho
ug

h
- c

irc
le

Lo
gi

c

M
ot

or

Fi
lte

r
-th

in

Fi
lte

r
-p

ru
ne

Traditional pipeline

/34

29

Competition among more thresholds

/34

30

Ca
me

ra BW

So
be

l
Th

re
sh

ol
d

Fi
lte

r
-iz

ol

Eg
de

s

Ho
ug

h
- c

irc
le

Lo
gi

c

M
ot

or

Fi
lte

r
-th

in

Fi
lte

r
-p

ru
ne

80

95

65

Va
ria

nc
e

Detectors

ps
eu

do
-o

pt
im

al
 th

re
sh

ol
d

ca
lc

ul
at

io
n

/34

31

more balls in scene

Detector a

circle-a1
circle-a2

circle-a3
circle-a4

Detector b

circle-b1
circle-b2

circle-b3
circle-b4

Detector c

circle-c1
circle-c2

circle-c3
circle-c4

Logic

Follower

/34

32

Logic
Follower

Interpolator

concentration on particular ball protected to
occlusion

/34

33

combining ball following with obstacle avoidance
(looking for a ball when no ball is present)

Explorer

Logic

Bump

Motor

p

p-1
p+1

/34

34

Multi-agent approach
to control

Thank you for attention!

Andrej Lúčny
MicroStep-MIS & DAI FMFI UK Bratislava

andy@microstep-mis.com
http://www.microstep-mis.com/~andy

/34

