Multi-agent approach
to control

Andrej Lucny
MicroStep-MIS & DAI FMFI UK Bratislava
andy(@microstep-mis.com

http://www.microstep-mis.com/~andy

1/34



Escaping from hardware layout
Multi-agent modularity
Agent-space architecture
Indirect communication
Data flow many:many
Time validity

Implicit sampling

Data packages
Subsumption and priorities
Comparison with 1Connect
Integration of traditional Al
An example

2/34



Future of control

» Structure of control 1s exclusively
implemented by software

However:

» Layout of the software modules still mimics
hardware layout

Question:

» Can we 1magine more sophisticated and
profitable layout ?

3/34



Traditional control

* modules have fixed number of 1nputs,

outputs and parameters

* one output 1s linked to several inputs

 transformation of inputs to outputs 1s
performed by a scheduler and it 1s often

uninterruptible

— ]

Modull

Paraml = vall

N

Il

Il

Modul2

4/34



Multi-agent modularity

* An alternative solution is application of
multi-agent modularity which turns
modules to agents and links to
communication among them

* In this way we give to control system the
same modularity as typical for distributed
and decentralized systems

5/34



Multi-agent system example

« Typical example: robot-soccer

6/34



Multi-agent system

* [t would be too difficult to write a program
which controls all the players.

* It 1s much easier to code programs for
individual players and let the team control
to emerge from their interaction

* Such interacting programs are called agents

7/34



Decentralization

Such solution 1s decentralized:

» for example, if we remove midfielder from
the team, striker does not stop (endlessly
waiting for a pass from the removed
midfielder), just probably scores a goal less
frequently. Even 1f the striker never got a
pass, he 1s still moving and ready to shoot
ball whenever 1t 1s available to him.

8/34



Nature of agents

 agents can be implemented as objects
equipped with an own thread of control and
a mechanism of a mutual data exchange
including sensation and action of the system
environment

9/34



Nature of agents

* each agent is endlessly Agent
running a sense-select-act
cycle. Any course through
this cycle calculates some Sense
actions upon information S:'::t
sensed from environment or

provided by other agents timer.
trigger

10/34



Communication among agents

The communication mechanism can be based on

* direct message passing

 1ndirect communication through a more or less
sophisticated blackboard (called also space)




Back to architecture of control

* Can we use the same modularity for
implementation of one player ?
(1.e. on lower level)

* Can we organize internal modules of one player 1n
similar way as cooperating players in the team ?

* (Can we use multi-agent modularity for building of
control ?

Yes, we can

12/34



Agent — Space architecture

We transform:
* modules to agents

* links among modules to indirect communication
via blocks 1n space (on blackboard)

= Ve

13/34



Indirect communication

Agents:

can read, write or delete particular blocks 1n space

know nothing about other agents, just know names
and structure of the blocks they manipulates with

perform their code on timer and/or trigger (a
change of selected blocks in space)

14/34



Indirect communication

Details of read, write and delete operations are:
* no method for block creation

reading of non-existing blocks 1s handled by returning
a default value specified by reader

value stored in block can have a limited time validity
specified by writer; after its expiration the block
becomes automatically empty

value stored in block can have a priority specified by
writer; such value overwritten only by value with
same or higher priority

space has no knowledge about value meaning; the
reader 1s responsible for correct interpretation

15/34



package com.microstepmis.agentspace.demo;
import com.microstepmis.agentspace.*;

public class Agentl extends Agent §{
inti=0;

public void init(String[] args) {
attachTimer(1000);
b

public void senseSelectAct() {
System.out.println("'write: "+i);
write("'a",i++);

}

public class Starter {
public static void main(String|[] args) {

}

}

new SchdProcess('space",' com.microstepmis.agentspace.SpaceFactory' ,new String[]{""DATA"});

Code example

public class Agent2 extends Agent §{
int i;

public void init(String args|[]) {
attachTrigger(''a");
;

public void senseSelectAct() {
i = (Integer) read("a",-1);
System.out.println("'read "+i);

}

new SchdProcess("agentl",'" com.microstepmis.agentspace.demo.Agentl" ,new String[]{});
new SchdProcess(''agent2",'" com.microstepmis.agentspace.demo.Agent2", new String[]{});

16/34



Data flow many:many

 each block can be written by many producers and
read by many consumers

* consumers do not know how much producers
generates the value or from whom the read value

IS cOming block in space

pVOdMC@I’S consumers

17/34



Time validity

When we have more producers, neither of them
can write “bad values”

Rather such producer does not write a value at all

But then it can happen that an old value persists in
space and i1t 1s taken by consumers as valid

Ideal solution is to define time validity for any
written value. After its expiration, the value
disappears from space (without agent intervention)

Thus 1t can happen that block 1s empty, so

consumer have to handle this state. Ideal solution

1s to use a default value specified when consumer
calls read operation 18/34



Implicit sampling

* Since write operation overwrites data stored 1n a
block regardless their consumers have undertaken
them or not, any data flow 1s inherently
(potentially) sampled.

fast agent

| TS L0, 101D, £12), £ 13, (19

slow agent\A

10,11,12,13,14

I5(10), I5(12), J5(14)

19/34



Why no packages

What to do 1f data are too frequent to be
communicated one by one ? What to do 1f no data
can be lost by implicit sampling ?

One solution: turn blocks to queues, process data
in packages

Problem 1: not clear semantics of more producers

Problem 2: more complicated processing
(additional loops)

Solution: Rather special triggers than packages, or
multiply blocks

20/34



Soft crash landing

 each agent can be restarted without impact on
system operation, mainly 1f they have no inner
state (rather they can have analogical information
In space)

 thus we can easily to add subsystem which starts

crashed agents again and thus provide recovery
from errors

* (each application specific code is concentrated in
agents, space 1s independent from application
domain)

21/34



Subsumption

layer N

layer 3

layer 2

layer 1

a design principle of
control which mimics
simplified biological
evolution

any complex control has
an origin in a simpler
ancestor

descendant mechanism

subsumes the mechanism
of 1ts ancestor

higher levels rather inhibait
and regulate than active
the lower levels

22/34



Subsumption

Question: How could the newer levels influence the
older ones? The older levels have been designed for
particular use and have no interfaces for future
development!

Answer: they have to have modular structure which
enables i1t !

Solution: concept of indirect communication 1s
suitable to provide that

23/34



Priorities

 However, blocks need to be associated also with
priorities

read write(prio+1) delete(prio+1)
write / \read write(prio) / \read write(prio) / \
read(default)

monitoring suppression inhibition

24/34



Integration of traditional Al

Agent modularity
 perfectly separates codes of modules
 cnables to integrate slow modules into the system

Thus 1t 1s suitable to integrate slow cognitive
structures on higher levels which subsumes fast
but just reactive processing on lower levels

 reinforcement learning
* neural networks
 rule-based systems

25/34



Agent (or several agents)

SignoGraph

Real-time, combining Real-time, combining
slower with faster - OK |slower with faster - OK
Block MultiCom

No data packages Data packages only
Implicit sampling Explicit sampling

Time validity of data Timestamp only

More producers of block, | Multiplexer,

priority ?

Recovery from errors ?

Any data structures Arrays of basic types

109Uu0)I 01 uostredwo))

26/34



An example

A mobile robot following a ping-pong ball

27/34



Traditional pipeline

sieiskeNiedeNictsieNiske

28/34




Competition among more thresholds

£ rawImage fps = 11.974872398901

29/34



@
Detectors

uone[noed

proysaiy) rewndo-opnasd

30/34



more balls in scene

circle-al
circle-a?2
circle-a3
circle-a4

Detector a Q/

circle-bl
circle-b2
circle-b3
circle-b4

CiVCle-C] /;llOWer
circle-c2

circle-c3
circle-c4

Detector b Q/

Logic

Detector c Q/

31/34



concentration on particular ball protected to
occlusion

=

Follower T

Logic

Interpolator Q

32/34



combining ball following with obstacle avoidance
(looking for a ball when no ball is present)

Bump Explorer

33/34



Thank you for attention!

Multi-agent approach
to control

Andrej Lucny
MicroStep-MIS & DAI FMFI UK Bratislava
andy(@microstep-mis.com
http://www.microstep-mis.com/~andy

34/34



