
Advantages of Multi-agent Approach to Building of
Monitoring Systems

Andrej Lú�ny

Department of Applied Informatics, FMFI
Comenius University, Mlynská Dolina, 842 48 Bratislava, Slovakia

e-mail: andy@microstep-mis.com

Abstract

We introduce Agent-Space architecture which is a specific application of multi-agent paradigm. It is
dedicated for building of systems which are not necessarily distributed but their agent-based
organization brings a profit. In our experience, monitoring systems are very suitable to be
implemented in this way. We demonstrate how we employed the architecture for their development
and we discuss benefits which we have got. Namely we improved real-time operation, reliability,
configurability and ability to be modified.
Keywords: agent, multi-agent system, agent-space architecture, real-time, monitoring.

1. Introduction

Within the last decade the technology-push
research at the field of multi-agent systems
has brought many more or less profitable
applications at various domains. Though
multi-agent modularity is traditionally
dedicated for distributed systems, it is
possible to apply it on any platform where
we have more processes or threads. In our
experience the real-time platforms for
development of monitoring systems are
very good candidates for multi-agent
approach. We present a particular
architecture which we have applied at this
field and discuss how much it is profitable.

2. Multi-agent approach

Under multi-agent approach we understand
any kind of system development which is
based on multi-agent modularity. The best
example is development of robotic team
playing robot-soccer. It would be too
difficult to write a program which controls
all the players. It is much easier to code
programs for individual players and let the
team control to emerge from their
interaction. Such interacting programs are
called agents and can be implemented as

objects equipped with an own thread of
control and a mechanism of a mutual data
exchange including sensation and action of
the system environment. Each agent is
endlessly running a sense-select-act cycle.
Any course through this cycle calculates
some actions upon information sensed from
environment or provided by other agents.
The communication mechanism can be
based on direct message passing or on
indirect communication through a more or
less sophisticated blackboard.

A highlight feature of this kind of
modularity is decentralization. Though one
agent can depend on data which are
provided by another agent, it does not mean
that this agent stops its activity when we
remove the other agent from the system.
Any agent has own thread of control and
does not need to receive a data to become
active. Any such dependence means just that
the outer behavior of the system can become
more or less successful when we add or
remove an agent from the system. For
instance - concerning the robot-soccer
example - when we remove midfielder from
the team, striker does not stop (endlessly
waiting for a pass from the removed
midfielder), just probably scores a goal less
frequently.

3. Traditional architectures of
monitoring systems

As monitoring systems need to operate in
real time, their traditional architectures are
based on process architectures of real-time
operating systems like QNX. Mostly it is
based on blocking message passing and
client-server relationship between
communicating processes organized in a
pyramid layout.

We can demonstrate the traditional
architecture on the following example:
There are two places where a floating
average of a quantity measured at the first
place should be displayed. Therefore we
put a probe on the first place and
interconnect the two places by two
communication lines (to have backup).
Then we can decompose the system into
the following processes (Figure 1):
• driver, which performs measurement

from the probe device and which is
able – as a server – to provide the last
measured value to any client which
sends it a proper request.

• average, which is a client of driver,
regularly asks it for measured values
and acts in parallel as a server which
provides their floating average

• display, which is a client of average
and just displays the floating average

on a specific display device. Thus we
have displayed the required value at the
place of measurement. Of course, we re-
use the same process for the same job on
the second place.

• transmission of the required value from
the first side to the other side can be
implemented by a pair of processes
which operate over the communication
lines. sender is a client of average and
put each value got from average to the
line which it controls. receiver receives
the value from the line and provides it at
request to any process on the other side.

• Having one line, we would be able to
implement receiver to have the same
client interface as average. Thus we
could let display to get values directly
from receiver. Unfortunately, we have
two lines and thus we need to implement
average2 which is a client of both
receiver-s and provides transferred
values to display regardless they are
received from the first, second or both
receiver-s.

This kind of architecture is widely used and
it is fine for any usual need, mainly if the
requirement is such simple as in our
example. However having necessity to build
complex systems operating under various
and uncertain conditions, open to
customization and later modifications, the
architecture exhibits several disadvantages.

driver
probe

average

display sender

sender

receiver

receiver

average2

display

line

line

Figure 1. Example of traditional architecture

In this paper we focus on two of them:
1. it is very difficult to restart just a part

of such system, because restart of any
server process requires restart of its
client processes and these processes
acts as servers for other clients, …, etc.
Finally, we need to restart almost
whole the pyramid.

2. it is impossible to modify existing data
flows without modification of existing
processes.

Why we need to treat these problems?
Well, at the first, it is not possible to
implement a complex system without
hidden errors and without necessity to
adjust its parameters or install updates
during its course. For all of this we need
the restarts. At the second, complex
systems are developed incrementally. And
the best method of incremental
development is to add increments without
any modification of the former parts. Or
course; in this case, we need at least the
ability to modify data flows among the
former parts.

4. Agent-Space architecture

It is obvious that the both above mentioned
problems have something to do with
decentralization. Therefore multi-agent
modularity could help us to overcome
them. One possible solution is application
of Agent-Space architecture proposed by

us in [2]. The architecture is based
exclusively on indirect communication, i.e.
agents just read and write messages on a
common blackboard (called space). The
messages are referenced by name and a
newer value potentially overwrites any
former value of the same name. An
important feature of these messages is their
bounded time validity, i.e. a writing agent
can define a period after which the written
content disappears. Besides it, any value can
have associated priority which protects it
against overwriting by values with lower
priority. However agent which has written
the lower-priority value is not aware of the
fact that the value has never been written.

Further it is important to explain that
activity of the agents is not data-driven.
Agents are invoked to perform their sense-
select-act code mainly by timer and even in
case of invocation by trigger (a change in
the space), the invoked agent knows just that
something has changed, but no particular
data are routed to it.

Concerning the above example, we can
make an analogous solution under Agent-
space architecture (Figure 2). We will use
two names of messages in space (on the
blackboard):
• current for storage of the current

measured value
• average for storage of the floating

average

driver average sender

warning

receiver

warning

current average

average

receiver

lineprobe

sender

line

Figure 2. Example of Agent-Space architecture

Further we will launch three agents at the
place of the measurement:
• driver which measures from probe and

writes the measured values to current
• average which reads values from

current and writes calculated floating
average into average

• display which reads values from
average and displays

In this moment we have displayed the
required value at the place of
measurement. Transmission of the value to
the other side can be implemented by pair
of agents – sender and receiver. While
sender is polling values from average and
transmits them to the line, receiver gets
them from the line and writes into average
message on the other side. It is interesting
that both receiver-s can write into the same
message as they write always the same.
Just receiver must not write something like
‘bad value’ when its line is broken; rather
it has to be quite in this case. Of course,
then there is a danger that both lines
become broken and the last value of
average remains displayed forever.
Therefore all such agents as receiver have
to write their values with bounded time
validity. Thus we do not need to
implement an agent analogous to average2
from the traditional solution. Finally,
display agent is re-used on the other side to
display the transmitted value.
 Now imagine what happen when
one communication line is fast and the
other one very slow. The sender operating
over the slow line spends too much of time
by writing data to the line. Thus it is not
able to undertake every value of average,
just every third one, for instance. The
system does not handle this situation as an
exception; it is concerned to be correct. In
this way Agent-space architecture supports
real-time operation.

5. Reliability, configurability and
soft crash landing sybsystem

Now, let us compare the two above
mentioned architectures according to the

problem one, i.e. the problem with restarts.
Concerning our example, imagine that the
probe generates occasionally such response
that driver crashes. Usual way how to treat
such states is to establish so-called soft crash
landing subsystem which follows course of
our system and tries to recover it when
something crashes. Such subsystem can
easily detect that driver has crashed and
launch it again. However, concerning the
traditional solution, average looses
connection to the driver by this act, thus it
also needs to be restarted. Analogically, the
same is required for display, and both
sender-s. Therefore we can rather restart
whole the system. Thus the soft crash
landing subsystem is reduced to a pure
watchdog. However, within agent-space
architecture, while the space (blackboard) is
operational, it is always enough to restart
one agent.

Of course, after such restart, still it can
happen that a transaction opened by the
former instance of the restarted agent is
corrupted. Such corruptions have an
interesting relation to well-known problem
in multi-agent paradigm, called accessibility
of internal state. If it is not allowed to agents
to keep information in their internal state –
in other words they are forced to keep it in
space, any kind of transaction can continue
after restart without any corruption.

6. Ability to be modified -
incremental development

Regarding the second problem – i.e.
possibility to modify data flows without
modification of the former codes – imagine
that we would like sometimes to display a
manually entered value instead of the
measured one. (It is a typical requirement
for any automatic monitoring which is
verified by observation.) Within the
traditional solution we have to modify
average to be able to undertake the
manually entered value instead of polling
driver. There is no other option. However,
within agent-space solution, we can simply
add an agent which put the manual value

directly into average in space. Just it has to
write it with a higher priority to protect its
overwriting by new values from driver.
Consequently, the agent must remove the
value when it is required to renew
displaying of the values provided by
measurement. Alternatively, the agent can
specify bounded time validity for the
manual value when it writes the value into
space.

7. Conclusion

In this article we have compared the
traditional architecture of monitoring
systems with a novel solution based on
multi-agent approach. We discussed

advantages of such solution; namely we
focused on reliability provided by soft crash
landing subsystem, configurability and
ability to be modified.

References

[1] Kelemen, J.: The Agent Paradigm.
Computing and Informatics, Vol.22. (2003),
pp. 513-519

[2] Lú�ny, A.: Building Complex Systems with
Agent-Space Architecture. Computing and
Informatics, Vol. 23 (2004), pp. 1001-1036

[3] Lú�ny, A.: From inter-module links to
indirect communication among agents.
ZNALOSTI ‘07, VŠB Ostrava, 2007

