
Modeling with Agent-Space
architecture

Andrej Lú�ny

MicroStep-MIS & Comenius University Bratislava

andy@microstep-mis.com

http://www.microstep-mis.com/~andy

Agent-Space architecture

• is a conception of internal structure of interactive
system models

• is suitable for decentralized models which global
behavior emerges from interaction among
modules with simpler but specific behavior

• has symbolic-computational nature, i.e. describes
the modeled system by higher-level modules

• Agent-space is a blackboard architecture
• models consist of many agents equipped with space

- a storage of named data blocks
• there is no direct communication among agents, they

communicate only through space
• agents can read, write or delete particular blocks in

space
• agent knows nothing about other agents, just knows

names and structure of the blocks it manipulates
with

• agents regularly perform quite a simple code within
sense-select-act cycle which is blocked by timer or
by trigger on change in space

• Agent-space is a kind of (generalized) agent-
oriented programming, i.e. it employs similar
modularity as typical for distributed systems,
though the application is not necessarily distributed

• (we do not concern here that agent must have
internal structures corresponding to mental states,
rather its code is usual and as simple as possible)

Network is
a computer

Computer is
a network

Details of read, write and delete operations are set

• for operation in real-time (producers overwrite
blocks regardless consumers have undertaken their
values, moreover automatic expiration of the values is
supported)
• to pay no attention to order of consumers and
producers activation
• to enable a higher-level agent to influence
communication between any two agents on lower
level (to monitor, to stop or to emulate)

agent agent

blocks in space

read write

data flowP
proxy

T

P

blocks in space

agent agent

write

data flow

readproxy

notification

trigger registration

�����

������

���

agent

�����

������

���

agent

�����

������

���

agent

�����

������

���

agent

Details of read, write and delete operations are:
• no method for block creation
• reading of non-existing blocks is handled by
returning a default value specified by reader
• value stored in block can have a limited time
validity specified by writer; after its expiration the
block becomes automatically empty
• value stored in block can have a priority specified by
writer; such value overwritten only by value with
same or higher priority
• space has no knowledge about value meaning; the
reader is responsible for correct interpretation

Resulted feature are:
• each block can be written by many producers and
read by many consumers
• consumers do not know how much producers
generates the value or from whom the read value is
coming
• if producers writes value with the same priority, it is
almost random whose value will be undertaken by
consumer
• if a consumer is too slow to undertaken all produced
values, its input is automatically sampled at the
highest possible speed
• each agent can be restarted without impact on
system operation (recovery from errors)

This architecture is derived from (or has a relation to):

• Society of mind by Minsky (the fundamental nature
of model)

• Fodor’s model of mind (nature of modules)
• Subsumption architecture by Brooks (bottom-up

incremental development)
• Blackboard architectures like Gelernter’s LINDA

(nature of communication among modules)
• Real-time systems (timers, triggers) as SRR

have it?
+

lookForVictim

paralyzeVictim

digNest

checkNest

pullIntoNest

carryToNest

closeNest

−

Example: modeling of mating behavior of digger wasp

sensed blocks:
inseminated
victimDetected
paralyzedVictimDetected
nestDetected
insideNest
nestClosed

retained blocks:
nestReady
checkingPerformed
checking
victimInNest

space: behaviors:

Generates a small-step
action at each call:

digNest()
lookForVictim()
paralyzeVictim()
carryToNest()
checkNest()
pullIntoNest()
closeNest()

for (each 1 second)
if (inseminated && !nestReady) {

if (insideNest) nestReady = true for 1 day;
else digNest();

}

for (each 1 second)
if (nestReady && !victimDectected)

lookForVictim();

for (each 1 second)
if (victimDectected && !paralyzedVictimDectected)

paralyzeVictim();

for (each 1 second)
if (paralyzedVictimDectected && !nestDectected)

carryToNest();

agents:

for (each 1 second)
if (!checkingPerformed && ((paralyzedVictimDectected

&& nestDectected) || checking) {
checking = true for 7 seconds;
checkNest();
if (insideNest)

checkingPerformed = true for 40 seconds;
}

for (each 1 second)
if (checkingPerformed && paralyzedVictimDetected

&& !victimInNest)
if (insideNest) victimInNest = true for 1 hour;
else pullIntoNest();

for (each 1 second)
if (victimInNest & !nestClosed) closeNest();

agents:

Such models:
• do not contain specific handling of exception;
handling exceptions is an inherent feature here
• are able to provide more information than those
observed in nature and inbuilt into model
• can provide hypothesis which can be tested in nature
and thus the models can be verified (e.g. from the
model we estimate that there is an impact of distance
of the moved victim – if small enough, no repetition
of nest checking appears)

raw image on-fly candidates (pedestrians, heads)

anticipated pedestrians model

biomimetic pedestrian recognition

3D model of robot ALLEN

data collection in unreliable
network (commercial project)

O t h e r a p p l i c a t i o n s

ball-following robot

