
Introduction to Robotics

for cognitive science

Dr. Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

Web page of the subject

www.agentspace.org/kv

Perception of

regular objects

classic Computer Vision

no machine learning

object

features

Robot following ball

The camera provides color images

BGR np.array((height,width,3),np.uint8)

Ball following

1. Edge detection

2. Circle shape detection provides (x,y,r)
where (x,y) is the center of the ball circle and r is its
radius

3. If x is too much on the left of the image, turn left.
If x is too much on the right of the image, turn right.
If r is too big, go backward.
If r is too small, go forward.

Grayscale image

• Turning color images (height, width, 3) to

grayscale (height, width)

• by numpy:

 gray=np.asarray(np.average(rgb,axis=2),np.uint8)

 by openCV:

 gray = cv2.cvtColor(bgr,cv.COLOR_BGR2GRAY)

Grayscale image

2D array of intensities 0..255

Blur (noise reduction)

frame = cv2.blur(frame,(3,3)) or

frame = cv2.GaussianBlur(frame,(5,5),0)

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

blur kernel 3x3

• Let us consider one line as a function of the column

column

in
te

n
si

ty

• Edges correspond to signitficant changes.

How do we filter them from the rest?

column

in
te

n
si

ty

• Also, pure subtraction of neighboring

pixels gives relatively good edges

Sobel kernel (vertical)

• just a little bit more sophisticated method

• concerns also other close pixels and aims to get

more compact edges

ai-1,j-1 ai-1,j ai-1,j+1

ai,j-1 ai,j ai,j+1

ai+1,j-1 ai+1,j ai+1,j+1

bi,j

-1 0 1

-2 0 2

-1 0 1

º =

bi,j = | ai-1,j+1 + 2ai,j+1 + ai+1,j+1 - ai-1,j-1 - 2ai,j-1 - ai+1,j-1 |

Yes, it works better than the pure subtraction

Let us look at the resulting image:

Sobel operator (vertical)

We have got nice vertical edges and almost no

horizontal edges

dx

Sobel kernel (horizontal)

• Therefore, we perform the same rotated by 90º

• and we combine results

ai-1,j-1 ai-1,j ai-1,j+1

ai,j-1 ai,j ai,j+1

ai+1,j-1 ai+1,j ai+1,j+1

bi,j

-1 -2 -1

0 0 0

1 2 1

º =

bi,j = | ai+1,j-1 + 2ai+1,j + ai+1,j+1 - ai-1,j-1 - 2ai-1,j – ai-1,j+1 |

Sobel operator (horizontal)

We have got nice horizontal edges,

dy

Sobel operator (magnitude)

and this is the combined output. It is still a

grayscale image (0-255). However, we would

like to get a binary image (255=edge, 0=other)

|dx+dy|

(dx2+dy2) ½
or

Sobel operator (slope)

• dx and dy - two ingredients provided by the Sobel

operator - also indicate the edge orientation

(dx,dy)

(0,0)

θ = [arctan(dy/dx)]

Canny operator

• binarizes output of Sobel operator

• reduces edges (thinning) by non-maximum

suppression (selects pixels with higher intensity

than neighbor pixels in the direction of the edge

slope; the magnitude of all others is zero)

• applies two thresholds – lower and higher:

A pixel with a magnitude over the higher threshold

is always on edge; a pixel with a magnitude over the

lower threshold is on edge if it is in the vicinity of a

pixel with a magnitude over the higher threshold

(hysteresis)

Canny operator

• we have a binary image corresponding to the edges

Shape recognition

• How do we select edge pixels that form,

e.g., a circle? We can employ:

• Ad-hoc methods

• RANSAC

• Hough transform

Ad Hoc method

• Component analysis of edge

• Test if a component (connected set of edge

pixels) is the circle:

• Find the most left and the most right pixels

• The potential center of the circle is the average

• Potential radius is half of their distance

• Test potential center and radius: 80% of the

rendered potential circle should be covered by

actual edge pixels

RANSAC

• Randomly select three edge pixels

• Calculate the potential center radius from them

• Test the potential center and radius: 80% of the

rendered potential circle should be covered by

actual edge pixels

• Repeat that many times

• Return the prevailing circle or no circle found

Hough Transform

• Hough transform is the opposite process of

drawing a regular object from its parameters

• It projects edge pixels to parameters space

Hough transform

We can represent a circle by three parameters:

• x-coordinate of center

• y-coordinate of center

• r-radius

x

y

r

having the parameter values, we

can draw the corresponding circle,

i.e., we can calculate the x and y

coordinates of its edge pixels.

Hough transform

Each parameter has a range and resolution

• E.g., with a camera resolution of 320 x 240 pixels

• The x-coordinate of the center has a range of 0..319

and a resolution of 1

• The y-coordinate of the center has a range of 0..239

and a resolution of 1

• radius has range, e.g., 10..200, resolution 1

• Thus, we look for one choice from 320 x 240 x 191

• Too much for us, but not for the computer

Hough transform

• For each such choice [x,y,r] we evaluate number of

voters P[x,y,r] who vote that:

“There is a circle with center [x,y] and radius r on

the image!”

• Who are the voters ?

Hough transform

Voters are the edge pixels. Each such pixel [x,y] votes

that on the image:

• There is a circle with center [x,y] and radius 0

• There is a circle with center[x-1,y] and radius 1

• There is a circle with center[x+1,y] and radius 1

• There is a circle with center[x,y-1] and radius 1

• There is a circle with center[x,y+1] and radius 1

• There is a circle with center [x-2,y] and radius 2

• ….

Hough transform

Voters are the edge pixels. Each such pixel [x,y] votes

that on the image:

• There is a circle with center [x,y] and radius 0

• There is a circle with center[x-1,y] and radius 1

• There is a circle with center[x+1,y] and radius 1

• There is a circle with center[x,y-1] and radius 1

• There is a circle with center[x,y+1] and radius 1

• There is a circle with center [x-2,y] and radius 2

• …. i.e. for all possible circles which contain pixel [x,y]

Hough transform

The votes of each pixel form a cone in the three-

dimensional space [x,y,r]. These cones intersect at

the point corresponding to the actual parameters (but

not only there)

So, when we look at the 3D space, we can detect the
correct center,

x

y

x

y

Though most votes are false, the highest number is
still assigned to the actual parameters!

Hough transform

and from another view, we can see the proper radius.

r

y

r

Hough transform

... Thus, we have identified the circle by shape

Hough transform (lines)

Analogically, we can detect lines (2 parameters),

ellipses (4 parameters), …

Hough transform

Rendering

Hough

transform

y

x

r
θ

(r, θ)

r = x cos θ + y sin θ

Hough transform

voters votes of one voter

votes summary

Hough transform - lines

Hough transform - segments

Vanishing point detection

	Snímka 1: Introduction to Robotics for cognitive science
	Snímka 2: Web page of the subject
	Snímka 3: Perception of regular objects
	Snímka 4: Robot following ball
	Snímka 5: The camera provides color images
	Snímka 6: Ball following
	Snímka 7: Grayscale image
	Snímka 8: Grayscale image
	Snímka 9: Blur (noise reduction)
	Snímka 10
	Snímka 11
	Snímka 12
	Snímka 13: Sobel kernel (vertical)
	Snímka 14
	Snímka 15: Sobel operator (vertical)
	Snímka 16: Sobel kernel (horizontal)
	Snímka 17: Sobel operator (horizontal)
	Snímka 18: Sobel operator (magnitude)
	Snímka 19: Sobel operator (slope)
	Snímka 20: Canny operator
	Snímka 21: Canny operator
	Snímka 22: Shape recognition
	Snímka 23: Ad Hoc method
	Snímka 24: RANSAC
	Snímka 25: Hough Transform
	Snímka 26: Hough transform
	Snímka 27: Hough transform
	Snímka 28: Hough transform
	Snímka 29: Hough transform
	Snímka 30: Hough transform
	Snímka 31: Hough transform
	Snímka 32
	Snímka 33: Hough transform
	Snímka 34: Hough transform
	Snímka 35: Hough transform (lines)
	Snímka 36: Hough transform
	Snímka 37: Hough transform
	Snímka 38: Hough transform - lines
	Snímka 39: Hough transform - segments
	Snímka 40: Vanishing point detection

