
Introduction to Robotics

for cognitive science

Dr. Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

Web page of the subject

www.agentspace.org/kv

Vectors in the space with

dimension N

0

N = 3

(0.592, 0.097, 0.767)

has a magnitude (size):

| (0.592, 0.097, 0.767) | = 0.974

make an angle

(the cosine of an angle two vectors make is the quotient of their

scalar product and the product of their magnitudes)

cos ϕ = 1 cos ϕ = 0 cos ϕ = -1

Cosine similarity

Large Language models

• Neural networks that process text

• They are trained on a large, primarily unannotated

dataset (language corpus)

• We can employ them to build:

• Generator

• Chatbot

• Classifier

• There are three inventions behind the great success of

LLM in the later era:

• Embedding

• Attention

• In-context learning / Prompt engineering

Corpus
In the heart of a kingdom ruled by a wise and just king, there existed a
delicate balance between the powers of man and woman. The king, adorned
in regal robes, sat upon his throne, his gaze commanding the attention of
all who entered his court. Beside him, his queen, a vision of grace and
elegance, exuded an aura of strength and compassion that complemented his
authority.

Throughout the kingdom, men and women alike looked to their sovereigns
with reverence and admiration. For they were not just rulers of land and
law, but embodiments of the ideals of kingly and queenly virtues.

In the bustling streets of the capital city, men toiled in the markets,
trading goods and sharing tales of valor from distant lands. Women, with
their heads held high and hearts filled with determination, worked
alongside them, their hands skilled in crafts both delicate and sturdy.
Together, they formed the lifeblood of the kingdom, each contributing
their unique strengths to the tapestry of society.

Men labored in fields, tending to crops that swayed in the breeze like
waves upon the ocean. Women, with baskets upon their arms and laughter
upon their lips, gathered fruits and herbs, their connection to the earth
as deep and ancient as the roots of the tallest oak…

Tokenizer

• It translates text, using a vocabulary for a

particular language, into a sequence of tokens

• Tokens correspond to:

• words

• syllabi (parts of words)

• special marks

<pad> I van won a car in Moscow <eos>
0, 27, 2132, 751, 3, 9, 443, 16, 15363, 1

<pad> Ni ki ta 's bicycle was stolen in
0, 2504, 9229, 9, 31, 7, 12679, 47, 14244, 16,

Le ni ng rad <eos>
312, 29, 53, 5672, 1

Embedding

The feature space of dimension 2

Two features: sex, rule

man woman

queenking

sex

rule

• It translates indices into vectors and back

Embedding

• We look for unique

and well-organized

embeddings.

• Embeddings of

tokens with similar

meanings are to be

at similar spots.

• Typically, they are

close to the surface

of a hypersphere.

Embedding

• Manual embedding creation, even for a small

vocabulary, is highly intricate.

• Therefore, we aim to develop embedding

automatically.

• We select the number of features we use. Then, we

start from a random embedding and train a neural

network for a task like:

• the prediction of the following word in the text

• the prediction of the (randomly) masked word in

each sentence.

Recurrent

neural

network

parameters

the following

token

11

training

token
recurrency

... token token token token ...

corpus

Recurrent Neural Network for

Natural Language Processing

Embedding

layer
Tokenizer

Long

Short-Term

Memory

(LSTM)

Full

connected

layers
(perceptron)

+ softmax

token =

index into

vocabulary

embedding

vector

vector representing

meaning of the

complete text

vector of the

next token

probabilities

text

T
ra

in
in

g
 e

m
b
ed

d
in

g

h
tt

p
s:

//
y
o
u
tu

b
e.

co
m

/s
h
o
rt

s/
fx

L
W

d
G

l7
Z

M
8

https://youtube.com/shorts/fxLWdGl7ZM8

Automated embedding fits our expectation

*

*

+

y

h

1-
h

x

w

x: -1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1…

y: 0,-0.4,-0.7,-0.9,-1,-0.9,-0.7,-0.4,0.1,0.5,0.9,1,1,1,1,…

dimension of x, y and h can be > 1

*

*

+

y

h

1-FC
h σ

x

Gated recurrent unit (GRU)

*

*

+

y

h

1-FC
h σ

FC
tanh*

FC
σ

x

σ

Long Short-Term Memory (LSTM)

x

FC

FC

+

+

+

+

σ

σ

h

ingate

forgetgate

cellgate

outgate

+

+

*cf*ci

c

σ

*

*

+

*co

+

*
h

y
c

tanh

tanh

σ

Embedding limits

• Homonyms must have the same embedding

but should have a different one

• He shot the ball into the net.
(the soccer ball)

• The ball tore off his leg.
(the cannonball)

Solution: Attention

• We mix the token meaning with the tokens

usually appearing in the same content.

He shot the ball into the net.

 ball → 0.8 ball + 0.1 shot + 0.1 net
(the soccer ball)

0.85
-0.5

0.9

1.0

Solution: Attention

• We mix the token meaning with the tokens

usually appearing in the same content.

The ball tore off his leg.

 ball → 0.85 ball + 0.1 tore + 0.05 leg
(the cannonball)

0.4

1.0
0.3

He shot the ball into the net.

ball → 0.8 ball + 0.1 shot + 0.1 net

0.85
-0.5

0.9

1.0

The ball tore off his leg.

 ball → 0.85 ball + 0.1 tore + 0.05 leg

0.4

1.0
0.3

Two problems to solve:

How do we calculate

similarities ?

How do we calculate attention (the mixture

weights) from similarities?

1

2

How do we calculate similarities? 1

ball
net

• The embedding vectors of

two tokens appearing in

the same context make a

slight angle.

• So, their cosine similarity

is close to one.

• Their scalar product

is significant since all

embeddings have a

similar magnitude.

1

• So, we compare a token (query) with each

token (keys)

• We calculate the scalar product of the query

with all keys and get a vector of similarities

The ball tore off his leg

ball

23.0 14.3-15.0 7.2 -4.7 10.8

How do we calculate similarities?

How do we calculate attention? 2

• The mixture weights are probabilities. So, we

can calulate them by the Softmax function

• We calculate the scalar product of the query

with all keys and get a vector of similarities

The ball tore off his leg

ball

23.0 14.3-15.0 7.2 -4.7 10.8

How do we calculate attention? 2
• The mixture weights are probabilities. So, we

can calulate them by the Softmax function

• we the scaling factor specifies how many to mix from

similar and how many from different keys

• The optimal value of the scaling factor is the square

root od dimension, but it can be slightly changed by

temperature t close to 1.0

How do we calculate attention? 2

• we can mix any values V:

• we do it for all queries:

Attention mechanism

Att

queries

keys

values

output

Self-Attention

Att

queries

keys

values

FC

FC

FC

(embedded)

tokens

(embedded)

tokens

Cross-Attention

Att

queries

keys

values

FC

FC

FC

Positional Encoding

0

1

2

• The tokens’ meaning depends on the position in the sentence

• Therefore, we can extend embedding by two features coding

the position

Multi-head Attention

• We can use more attention blocks in

parallel and concatenate the output

• In this way, we let individual heads to

specialize

Masked Attention

• Attention is relatively slow since its

computational complexity is the

quadratic of the number of tokens

• We can decrease the number of the

calculated scalar products by a mask

Deformed Attention

• The mask can be fixed or we can

calculate it dynamically

• In this case, we call it deformed

attention

Att

queries

keys

values

FC

FC

FC

tokens tokens

mask mask

Full

connected

layers
(perceptron)

Embe

dding

layer

Tokenizer

batches of vectors representing

meaning of tokens

text

Embedding

layer
Attention

transformer block

so
ft

m
ax

Transformer
T

o
k
en

iz
er

E
m

b
ed

d
in

g

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

S
o
ft

m
ax

…

• Transformer is gradually processing a batch of tokens

• At the beginning they represent meaning of words or syllabi

but gradually represent the global meaning

• Finally, (typically) the last one represents the prediction and

the first one the classification

Encoder-Decoder architecture

E
m

b
ed

d
in

g

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

…

E
m

b
ed

d
in

g

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

…

en
co

d
er

d
ec

o
d
er

Encoder employs attention and Decoder emplys cross-attention

Text generator

E
m

b
ed

d
in

g

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

…

q
u
es

ti
o

n

S
o
ft

m
ax

Chatbot

E
m

b
ed

d
in

g

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

…

E
m

b
ed

d
in

g

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

…

q
u
es

ti
o

n

S
o
ft

m
ax

Chatbot is a regulated tare

Classifier

E
m

b
ed

d
in

g

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

T
r.

b
lo

ck

…

te
x

t

In-context learning

• The quality of first LLMs was not convincing.

Therefore, the first thing that occurred to everyone who

still needed an ideal answer from the model was

whether it was possible to ask a better question to get a

better answer.

• As a result, they discovered an interesting emergent

phenomenon called in-context learning: the quality of

the answer is positively affected when, together with

the question, we enter additional information into the

model

In-context learning

Human: "What is the capital of Slovakia?“

LLM: "Prague."

Human: "The capital of Slovakia is Bratislava. What is the

capital of Slovakia?"

LLM: "Bratislava."

Of course, LLM does not learn anything, its parameters are

fixed. However, the more precise context causes that more

precise answer is generated.

Prompt engineering

In-context learning enables us to engineer the prompt.

Human to the robot: “Can you walk?“

We feed LLM with: “You are a robot with two hands, but no

legs, … Can you walk?”

LLM: “No”

chain of thoughts
question

	Snímka 1: Introduction to Robotics for cognitive science
	Snímka 2: Web page of the subject
	Snímka 3: Vectors in the space with dimension N
	Snímka 4: Cosine similarity
	Snímka 5: Large Language models
	Snímka 6: Corpus
	Snímka 7: Tokenizer
	Snímka 8: Embedding
	Snímka 9: Embedding
	Snímka 10: Embedding
	Snímka 11: Recurrent neural network
	Snímka 12: Recurrent Neural Network for Natural Language Processing
	Snímka 13: Training embedding
	Snímka 14: Automated embedding fits our expectation
	Snímka 15
	Snímka 16
	Snímka 17: Gated recurrent unit (GRU)
	Snímka 18: Long Short-Term Memory (LSTM)
	Snímka 19: Embedding limits
	Snímka 20: Solution: Attention
	Snímka 21: Solution: Attention
	Snímka 22
	Snímka 23
	Snímka 24: How do we calculate similarities?
	Snímka 25: How do we calculate similarities?
	Snímka 26: How do we calculate attention?
	Snímka 27: How do we calculate attention?
	Snímka 28: How do we calculate attention?
	Snímka 29: Attention mechanism
	Snímka 30: Self-Attention
	Snímka 31: Cross-Attention
	Snímka 32: Positional Encoding
	Snímka 33: Multi-head Attention
	Snímka 34: Masked Attention
	Snímka 35: Deformed Attention
	Snímka 36
	Snímka 37: Transformer
	Snímka 38: Encoder-Decoder architecture
	Snímka 39: Text generator
	Snímka 40: Chatbot
	Snímka 41: Classifier
	Snímka 42: In-context learning
	Snímka 43: In-context learning
	Snímka 44: Prompt engineering

