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Web page of the subject

www.agentspace.org/kv



Vectors in the space with

dimension N

0

N = 3

(0.592, 0.097, 0.767)



has a magnitude (size):

| (0.592, 0.097, 0.767) | = 0.974

make an angle

(the cosine of an angle two vectors make is the quotient of their 

scalar product and the product of their magnitudes)

cos ϕ = 1 cos ϕ = 0 cos ϕ = -1

Cosine similarity



Large Language models

• Neural networks that process text

• They are trained on a large, primarily unannotated

dataset (language corpus)

• We can employ them to build:

• Generator

• Chatbot

• Classifier

• There are three inventions behind the great success of 

LLM in the later era:

• Embedding

• Attention

• In-context learning / Prompt engineering



Corpus
In the heart of a kingdom ruled by a wise and just king, there existed a 
delicate balance between the powers of man and woman. The king, adorned 
in regal robes, sat upon his throne, his gaze commanding the attention of 
all who entered his court. Beside him, his queen, a vision of grace and 
elegance, exuded an aura of strength and compassion that complemented his 
authority.

Throughout the kingdom, men and women alike looked to their sovereigns 
with reverence and admiration. For they were not just rulers of land and 
law, but embodiments of the ideals of kingly and queenly virtues.

In the bustling streets of the capital city, men toiled in the markets, 
trading goods and sharing tales of valor from distant lands. Women, with 
their heads held high and hearts filled with determination, worked 
alongside them, their hands skilled in crafts both delicate and sturdy. 
Together, they formed the lifeblood of the kingdom, each contributing 
their unique strengths to the tapestry of society.

Men labored in fields, tending to crops that swayed in the breeze like 
waves upon the ocean. Women, with baskets upon their arms and laughter 
upon their lips, gathered fruits and herbs, their connection to the earth 
as deep and ancient as the roots of the tallest oak…



Tokenizer

• It translates text, using a vocabulary for a 

particular language, into a sequence of tokens

• Tokens correspond to:

• words

• syllabi (parts of words)

• special marks

<pad> I   van   won  a     car  in  Moscow <eos>
0,    27, 2132, 751, 3, 9, 443, 16, 15363, 1

<pad> Ni    ki    ta  's     bicycle was stolen in  
0, 2504, 9229, 9, 31, 7, 12679, 47, 14244, 16,

Le ni ng rad <eos>
312, 29, 53, 5672, 1



Embedding

The feature space of dimension 2

Two features: sex, rule

man woman

queenking

sex

rule

• It translates indices into vectors and back



Embedding

• We look for unique 

and well-organized 

embeddings. 

• Embeddings of 

tokens with similar 

meanings are to be 

at similar spots. 

• Typically, they are 

close to the surface 

of a hypersphere.



Embedding

• Manual embedding creation, even for a small 

vocabulary, is highly intricate.

• Therefore, we aim to develop embedding 

automatically.

• We select the number of features we use. Then, we 

start from a random embedding and train a neural 

network for a task like:

• the prediction of the following word in the text

• the prediction of the (randomly) masked word in 

each sentence.
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corpus



Recurrent Neural Network for

Natural Language Processing

Embedding

layer
Tokenizer

Long

Short-Term 

Memory

(LSTM)

Full

connected

layers
(perceptron) 

+ softmax

token = 

index into 

vocabulary

embedding 

vector

vector representing 

meaning of the 

complete text

vector of the 

next token 

probabilities 

text
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https://youtube.com/shorts/fxLWdGl7ZM8


Automated embedding fits our expectation
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x: -1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1…

y: 0,-0.4,-0.7,-0.9,-1,-0.9,-0.7,-0.4,0.1,0.5,0.9,1,1,1,1,…

dimension of x, y and h can be > 1
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Gated recurrent unit (GRU)
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Embedding limits

• Homonyms must have the same embedding 

but should have a different one

• He shot the ball into the net.
(the soccer ball)

• The ball tore off his leg.
(the cannonball)



Solution: Attention

• We mix the token meaning with the tokens 

usually appearing in the same content.

He shot the ball into the net.

              ball → 0.8 ball + 0.1 shot + 0.1 net
(the soccer ball)

0.85
-0.5

0.9

1.0



Solution: Attention

• We mix the token meaning with the tokens 

usually appearing in the same content.

The ball tore off his leg.

             ball → 0.85 ball + 0.1 tore + 0.05 leg
(the cannonball)

0.4

1.0
0.3



He shot the ball into the net.

ball → 0.8 ball + 0.1 shot + 0.1 net

0.85
-0.5

0.9

1.0



The ball tore off his leg.

             ball → 0.85 ball + 0.1 tore + 0.05 leg

0.4

1.0
0.3

Two problems to solve:

How do we calculate 

similarities ?

How do we calculate attention (the mixture 

weights) from similarities?

1

2



How do we calculate similarities? 1

ball
net

• The embedding vectors of 

two tokens appearing in 

the same context make a 

slight angle. 

• So, their cosine similarity 

is close to one. 

• Their scalar product 

is significant since all 

embeddings have a 

similar magnitude.



1

• So, we compare a token (query) with each

token (keys)

• We calculate the scalar product of the query

with all keys and get a vector of similarities

The ball tore off his leg

ball

23.0 14.3-15.0 7.2 -4.7 10.8

How do we calculate similarities?



How do we calculate attention? 2

• The mixture weights are probabilities. So, we

can calulate them by the Softmax function

• We calculate the scalar product of the query

with all keys and get a vector of similarities

The ball tore off his leg

ball

23.0 14.3-15.0 7.2 -4.7 10.8



How do we calculate attention? 2
• The mixture weights are probabilities. So, we

can calulate them by the Softmax function

• we the scaling factor specifies how many to mix from 

similar and how many from different keys

• The optimal value of the scaling factor is the square 

root od dimension, but it can be slightly changed by 

temperature t close to 1.0



How do we calculate attention? 2

• we can mix any values V:

• we do it for all queries:



Attention mechanism

Att

queries

keys

values

output
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Cross-Attention
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Positional Encoding

0

1

2

• The tokens’ meaning depends on the position in the sentence

• Therefore, we can extend embedding by two features coding 

the position



Multi-head Attention

• We can use more attention blocks in 

parallel and concatenate the output

• In this way, we let individual heads to 

specialize



Masked Attention

• Attention is relatively slow since its 

computational complexity is the 

quadratic of the number of tokens

• We can decrease the number of the

calculated scalar products by a mask



Deformed Attention

• The mask can be fixed or we can

calculate it dynamically

• In this case, we call it deformed

attention

Att

queries

keys

values

FC

FC

FC

tokens tokens

mask mask
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• Transformer is gradually processing a batch of tokens

• At the beginning they represent meaning of words or syllabi 

but gradually represent the global meaning

• Finally, (typically) the last one represents the prediction and 

the first one the classification



Encoder-Decoder architecture
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Encoder employs attention and Decoder emplys cross-attention



Text generator
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Chatbot
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Classifier

E
m

b
ed

d
in

g

T
r.

  
b
lo

ck

T
r.

  
b
lo

ck

T
r.

  
b
lo

ck

T
r.

  
b
lo

ck

T
r.

  
b
lo

ck

…

te
x

t



In-context learning

• The quality of first LLMs was not convincing. 

Therefore, the first thing that occurred to everyone who 

still needed an ideal answer from the model was 

whether it was possible to ask a better question to get a 

better answer. 

• As a result, they discovered an interesting emergent 

phenomenon called in-context learning: the quality of 

the answer is positively affected when, together with 

the question, we enter additional information into the 

model



In-context learning

Human: "What is the capital of Slovakia?“

LLM: "Prague." 

Human: "The capital of Slovakia is Bratislava. What is the 

capital of Slovakia?" 

LLM: "Bratislava."

Of course, LLM does not learn anything, its parameters are 

fixed. However, the more precise context causes that more 

precise answer is generated.



Prompt engineering

In-context learning enables us to engineer the prompt.

Human to the robot: “Can you walk?“

We feed LLM with: “You are a robot with two hands, but no 

legs, …  Can you walk?”

LLM: “No”

chain of thoughts
question
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