
Spaces and Reactive Agents
under QNX4

Andrej Lúčny
MicroStep-MIS

QNX Tools and Technologies,
Bratislava 2-4.12.2001

QNX4 IPC

• blocking message passing - great and
almost exclusive means for data exchange
and process synchronization

QNX4 IPC

• non-blocking communication by proxies -
means to realize triggers

QNX4 IPC

• Shared memory and named pipes are
recommend to be turned to message
passing (Mqueue)

Deadlock problem

• having couple of communicating
processes without any order, deadlock
can appear easily

• three possible solutions
– to obey an architecture
– to establish non-blocking message passing
– both

Pyramidal Client-Server
Architecture

• Client-Server
relation between
each two
communicating
processes

• Client must be on
higher level than
its Server

Pyramidal Client-Server
Architecture

• many libraries for
wrapping and
marshalling

Pyramidal Client-Server
Architecture

• difficult design for
cycled data flow

message buffers, ferrymen, named pipes, ...

Pyramidal Client-Server
Architecture

• tangled code of any
server
(lack of threads)

server must be able to provide services
also during longer-term cooperation

Non-blocking message passing

• can be established over blocking message
passing by adding a process which is able
receive a message from sender and store
it until its recipient is ready to take it out.

Non-blocking message passing

• message stored in the added process is
usually referenced by recipient id or
channel name (address communication)

Space

• if the stored message is referenced by
stigma of its content, the added process is
called space (stigmergic communication)

in space, a
reference specifies
not only data
format, but also
data content and
meaning

Space

• Place, where a message is stored in space,
is called block

• block has a name which represents its
content and it should contain only data
which logically belong one to each other

Space

• space is a server providing to its clients
– write to a block
– read from a block
– (notification that a block is changed)

non-blocking
operations

Space

• block (unlike its content) does not depend
on its writers and readers

• nobody has to create it
• it can be empty
• it can store message of arbitrary size
• it can be read before it is written

Space

• usually, blocks are not queues, their
content is overwritten by write operation

• their number corresponds to number of
logical units which clients have dealt with

• consecutively, space is not a message
queue

Space

• usually, read and write operation deals
with just one particular block

• consecutively, space is not a database

Space

• content can be written to a block with a
specified validity

• after its expiration, block becomes empty
regardless somebody has read it or not

Space

• is quite a difficult program relaying on
sophisticated algorithms

• it must be powerful enough
• it must not contain serious errors
• BUT! it is same for all clients within all

projects, so we can concentrate on it to
meet all these requirements

Space
• can be taken as result of a server decomposition: it

corresponds to that part of the decomposed server
which realizes communication with clients

Reactive Agent

• By this decomposition, the former clients
and codes related to the former services
become much simpler and can get a
structure:

Reactive Agent

• In this way we have met concept of
reactive agent, what is a process which
regularly selects and performs actions as
reaction to perception of its environment.

reactive agent
pursue a goal built-
in its reactions

Reactive Agent
void main ()
{

// initialization
for (;;) {

Receive (proxy,...); // timer or trigger
ReadFromSpace(‘a’,&a); ... // perception
... Compute b form a ... // selection
WriteToSpace(‘b’,&b); ... // action

}
}

Reactive Agent

• reactive agent is simple enough to write it
within one thread without tangling of
code

Reactive Agent

• each reactive agent uses only one library
for inter-process communication

• the library is quite simple
• in this way wrapping is normalized
• the norm is very compact

Agent-Space Architecture

• only two kinds of processes are allowed
within a system: spaces and reactive
agents

• all space processes correspond to the
same program

• any code related to application domain is
concentrated in reactive agents

Agent-Space Architecture

Agent-Space Architecture

• Advantages:
– easy to design system
– easy to code agents
– easy to modify system
– easy to start system
– easy to restart any agent
– easy to recover from errors in agents
– normalization of communication interfaces

Agent-Space Architecture

• Disadvantages:
– less efficient solution
– spaces must be reliable
– communicated data can be potentially lost

(in practice, it is overcome by real-time)
(on the other hand, it supports real-time)

– no profit from threads

Agent-Space Architecture

• agent-space architecture and real-time operating
system support each other

• the idea is very suitable mainly for QNX4 where
we have no threads

• Under QNX4 the idea is already applied on data-
server for slinger (SSI technology)

• possible extensions: normalization of
marshalling, representation languages, XML,
mobile code

Agent-Space Architecture

• Applications:
– Technology

• monitoring systems
• control systems
• simulators

– Science
• simulation of any reactive behavior
• mobile robotics
• computational etology

Thank you!

Spaces and Reactive Agents under QNX4

Andrej Lúčny
MicroStep-MIS

QNX Tools and Technologies,
Bratislava 2-4.12.2001

www.microstep-mis.sk
andy@microstep-mis.sk

