Spaces and Reactive Agents
under QNX4

Andrej Lucny
MicroStep-MIS

QNX Tools and Technologies,
Bratislava 2-4.12.2001

QNX4 IPC

* blocking message passing - great and
almost exclusive means for data exchange

and process synchronization

Fecower Sende-

QNX4 IPC

* non-blocking communication by proxies -
means to realize triggers

Ovmer Vier Ouner

rqm;r.-ni
! S—

o

QNX4 IPC

 Shared memory and named pipes are
recommend to be turned to message
passing (Mqueue)
shaved

HI"I"J.

Deadlock problem

* having couple of communicating
processes without any order, deadlock
can appear easily

* three possible solutions g:}’

— to obey an architecture
— to establish non-blocking message passing
— both

Pyramidal Client-Server
Architecture

e Client-Server
relation between
each two
communicating
processes

Wier

e Client must be on
higher level than
its Server

Pyramidal Client-Server
Architecture

 many libraries for
wrapping and
marshalling

vord Sna”nun ()
i

MY_ M5& LY ¥
ﬂ'rtrj {mgy,. HL""AH:'}}* Servers

s!hﬂ‘fmﬁ'ﬁﬂﬂd, kmsy, Jmiq,
} Srie g fnhtﬂ‘}. :rn-HMtg‘%

Jl

Pyramidal Client-Server
Architecture

e difficult design for
cycled data tflow

message buffers, ferrymen, named pipes, ...

Pyramidal Client-Server

Architecture
* tangled code of any g 0
server ;;; :
(lack of threads) ol i
s o3
for ;) § \ ;" ;.
id: Receine (O,lmg.--- ¢
Ewih’l\ (mlg.mf‘l"n] i ‘T t
tase ‘ar’: :
mgz...

L

}

Reply (pid, $ mig2,..)

server must be able to provide services
also during longer-term cooperation

Non-blocking message passing

* can be established over blocking message
passing by adding a process which is able
receive a message from sender and store
it until its recipient is ready to take it out.

e Sewof

Non-blocking message passing

 message stored in the added process is
usually referenced by recipient id or
channel name (address communication)

Space

* if the stored message is referenced by
stigma of its content, the added process is
called space (stigmergic communication)

SPACE in space, a

reference specifies
not only data
format, but also
data content and
meaning

Space

* Place, where a message is stored in space,
is called block

* block has a name which represents its
content and it should contain only data
which logically belong one to each other

tenpemture
ﬂ-i Om: 10
ot Im: & “c\/

Space

e space is a server providing to its clients

— write to a block non-blocking
p
— read from a block .

— (notification that a block is changed)

Space

block (unlike its content) does not depend
on its writers and readers

nobody has to create it

it can be empty

it can store message of arbitrary size
it can be read before it is written

tenpemiure Benpem bure
[Jla < f I {

Space

e usually, blocks are not queues, their
content is overwritten by write operation

e their number corresponds to number of
logical units which clients have dealt with

e consecutively, space is not a message

5

Space
e usually, read and write operation deals

with just one particular block
e consecutively, space is not a database

o+ &

Space

e content can be written to a block with a
specified validity

o after its expiration, block becomes empty
regardless somebody has read it or not

bemad it 7000~
Crme
hTu"h.. ut‘i-l.

Space

is quite a difficult program relaying on
sophisticated algorithms

it must be powerful enough
it must not contain serious errors

BUT! it is same for all clients within all
projects, so we can concentrate on it to
meet all these requirements

Space

e can be taken as result of a server decomposition: it
corresponds to that part of the decomposed server
which realizes communication with clients

former mherface
Space

Whwmry

Reactive Agent

By this decomposition, the former clients
and codes related to the former services
become much simpler and can get a
structure:

Recewe {...); H profect Linleck

Somd (..}, i tead Lrom Space
it ﬂl’"i#l[ﬂkr Aato

&;d‘ (.); Hwrile fo tpace

Reactive Agent

In this way we have met concept of
reactive agent, what is a process which
regularly selects and performs actions as
reaction to perception of its environment.

reactive agent
pursue a goal built-
in its reactions

reeption
g:fu on
action

Reactive Agent

void main ()

d

// initialization

for (53) {
Receive (proxy,...);

ReadFromSpace(‘a’,&a); ...

... Compute b form a...

WriteToSpace(‘b’,&b); ...

// timer or trigger
// perception

// selection

// action

Reactive Agent

e reactive agent is simple enough to write it
within one thread without tangling of

code

L,
"

3 bt L B
UL el

Reactive Agent

each reactive agent uses only one library
for inter-process communication

the library is quite simple
in this way wrapping is normalized
the norm is very compact

a4

Agent-Space Architecture

e only two kinds of processes are allowed
within a system: spaces and reactive
agents

* all space processes correspond to the
same program

* any code related to application domain is
concentrated in reactive agents

Agent-Space Architecture

Agent-Space Architecture

 Advantages:
— easy to design system
— easy to code agents
— easy to modify system
— easy to start system
— easy to restart any agent
— easy to recover from errors in agents

— normalization of communication interfaces

Agent-Space Architecture

* Disadvantages:
— less efficient solution
— spaces must be reliable
— communicated data can be potentially lost
(in practice, it is overcome by real-time)
(on the other hand, it supports real-time)
— no profit from threads

Agent-Space Architecture

agent-space architecture and real-time operating
system support each other

the idea is very suitable mainly for QNX4 where
we have no threads

Under QNX4 the idea is already applied on data-
server for slinger (SSI technology)

possible extensions: normalization of
marshalling, representation languages, XML,
mobile code

Agent-Space Architecture

* Applications:
— Technology

e monitoring systems
e control systems
e simulators

— Science
e simulation of any reactive behavior

 mobile robotics
e computational etology

Thank you!

Spaces and Reactive Agents under QNX4

Andrej Lucny
MicroStep-MIS

QNX Tools and Technologies,
Bratislava 2-4.12.2001

www.microstep-mis.sk

andy@microstep-mis.sk

