Introduction to Robotics for cognitive science

Dr. Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

Web page of the subject

www.agentspace.org/kv

Why is DL possible today and was not possible before?

Software inventions:

- Dropout &
 Batch normalization
 (solves overfitting & vanishing gradient)
- Xavier initialization
- Novel loss functions (metric loss function)

Hardware inventions:

- Big Data Storages
- Graphics Processing Units

Why is DL possible today and was not possible before?

Software inventions:

- Dropout &
 Batch normalization
 (solves overfitting & vanishing gradient)
- Xavier initialization
- Novel loss functions (metric loss function)

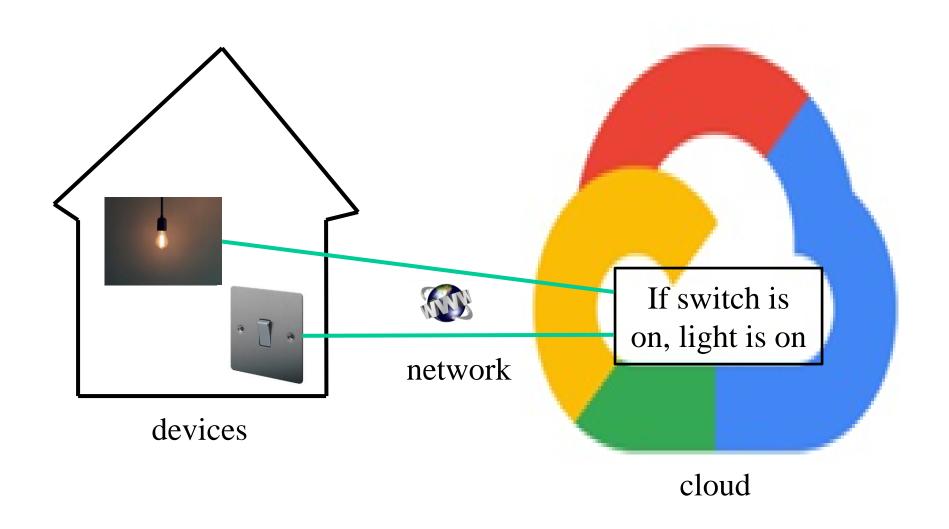
Hardware inventions:

- Big Data Storages
- Graphics Processing Units

We need powerful hardware not available everywhere, not only for training but also for the use of the DL models.

Solution: Cloud technology

• Instead of calling a local subroutine, program compose http request with attached marshaled arguments and get a marshaled result as a response



Today such call takes 80 ms from EU, 40 ms from USA

Calling cognitive web services

```
import requests
import urllib3
import numpy as np
import cv2
# define the URL to our face detection API
service url = "http://api.pyimagesearch.com/face detection/detect/"
image url = "http://dai.fmph.uniba.sk/upload/1/1a/KUZ2009-3.jpg"
# use our face detection API to find faces in images via image URL
payload = {"url": image_url}
r = requests.post(service url, data=payload).json()
print(r) # this is result of the web service call
{'num faces': 2, 'success': True, 'faces': [[443, 493, 510, 560],
[371, 110, 493, 232]]}
```

Internet of Things (IoT)

Robot Pepper

- Relatively cheap robot
- Lower quality
- Calling cloud cognitive services,
 e.g., face recognition
- Without a connection to the Internet is not working

Google Cloud

Google cloud provides APIs for computer vision, speech recognition, natural language processing, and translation.

- Google Cloud Video Intelligence API makes videos searchable and discoverable by extracting metadata, identifying key nouns, and annotating the content of the video.
- Google Cloud Vision API enables you to understand the content of an image including categories, objects and faces, words, and more. Face recognition is a common use of Vision API.
- Google Cloud Speech API enables you to convert audio to text by applying neural network models in an easy to use API.
- Google Natural Language API provides developers functionality to information about people, places, events and much more, mentioned in text documents, news articles or blog posts.
- Google Cloud Translation API lets developers convert text from a source language to a target language.

IBM Watson

AlchemyAPI

An AlchemyAPI service that analyzes your unstructured text and image content

IBM

Concept Expansion

Maps euphemisms or colloquial terms to more commonly understood phrases

IBM

Beta

Concept Insights

Explore the concepts behind your input, identifying associations beyond tradition

IBM

Dialog

Enable your application to use natural language to converse with users

IBM

Document Conversion

Converts a HTML, PDF, or Microsoft Word™ document into a normalized HTML, plin

IBM

Language Translation

Translate text from one language to another for specific domains.

IBM

Natural Language Classifier

Natural Language Classifier performs natural language classification on question tours

IBM:

Personality Insights

The Watson Personality Insights derives insights from transactional and social m-

IBM

Relationship Extraction

Intelligently finds relationships between sentences components (nouns, verbs.

IBM.

Beta

Retrieve and Rank

Add machine learning enhanced search capabilities to your application

IBM

Speech To Text

Low-latency, streaming transcription

IBM

Text to Speech

Synthesizes natural-sounding speech from

IBM

Tone Analyzer

It helps people detect, understand and revise the language tones of emotions, social

IBM Beta

Tradeoff Analytics

Helps make better choices under multiple conflicting goals. Combines smart visual

IBM

Visual Recognition

Analyzes the visual content of images and videos to understand their content without

Beta

MicroSoft Azure

Cognitive Services APIs

Vision API

Computer Vision

Custom Vision Service

Face API

Forms Recognizer PREVIEW

Ink Recognizer PREVIEW

Video Indexer

Search API

Bing News Search

Bing Video Search

Bing Web Search

Bing Autosuggest

Bing Custom Search

Bing Entity Search

Bing Image Search

Bing Visual Search

Bing Spell Check

Bing Local Business Search PREVIEW

Speech API

Speech Services

Speaker Recognition PREVIEW

Bing Speech API RETIRING

Translator Speech RETIRING

Decision API

Anomaly Detector PREVIEW

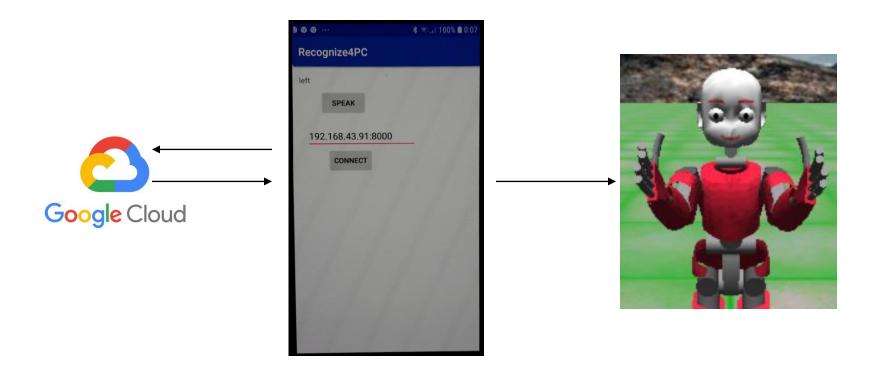
Content Moderator

Personalizer PREVIEW

Language API

Language Understanding (LUIS)

QnA Maker

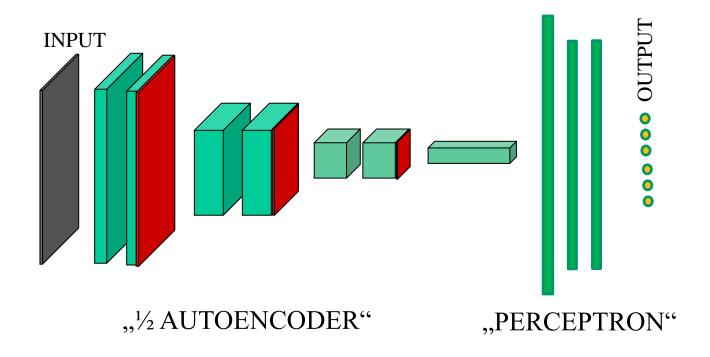

Text Analytics

Translator Text

A dark side of the cloud services

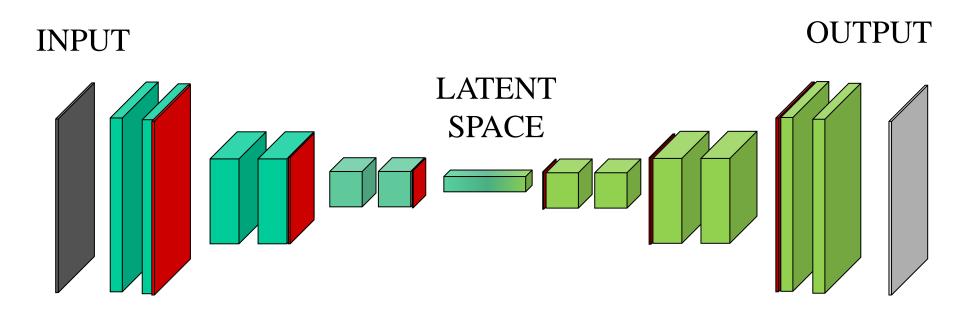
- Cloud services could be very comfortable
- However, they are not:
 - because of their business model
 - each user must register
 - each call is charged
 - quality can be disputable, and the service rather freely collects data from users
- One can a get free period or free initial amount of calls
- Exception: Android platform can call Google cloud without any restrictions

Voice recognition from Android


https://github.com/andylucny/Recognize4PC

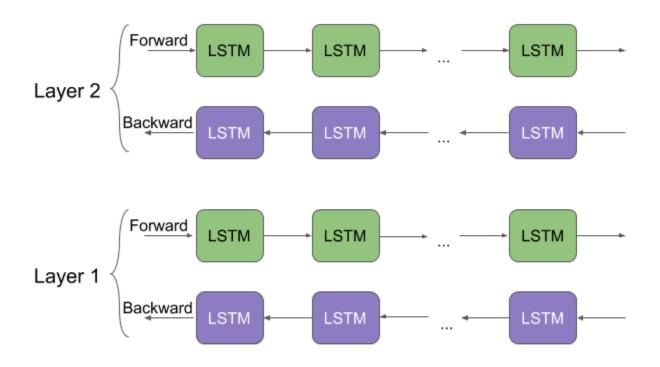
How do cloud cognitive services work?

How do cloud cognitive services work?


→ They employ non-free models of deep learning

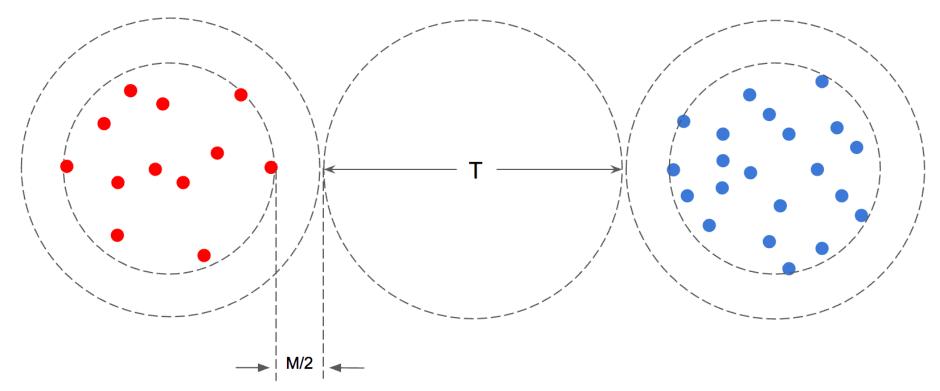
Classifiers and detectors

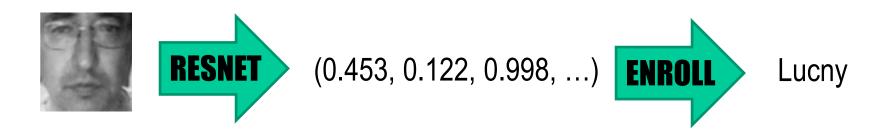
Captioning, Translators


Encoder - Decoder

"½ AUTOENCODER"

"½ AUTOENCODER"

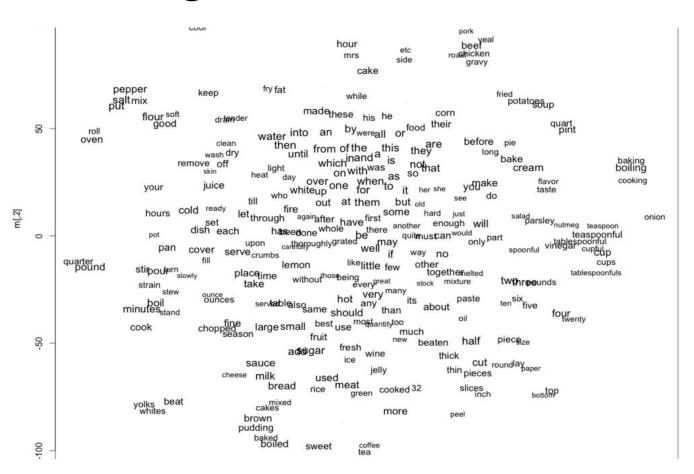

Processing of speech, text, video


Deep Recurrent Neural Networks

Metric Loss Function

- Samples contains just category though we look for a value
- Good results: the same category & distance < T-M or different category & distance > T+M, Bad results: otherwise
- gradient is estimated from a few worst cases, e.g. red dot close to blue dot should be moved from the blue dot

Vectorization for Recognition



Ordinary ResNet network trained by the metric loss function on dataset containing several faces for each person can provide vector of 256 floats <0,1> such that:

- vectors provided for faces of the same person are similar (their Euclid distance is low)
- vectors provided for faces of different persons are different (their Euclid distance is high)

http://www.agentspace.org/andy/learnopencv/

New generation of chatbots

- Based on vectorization of words and sentences
- For each intention one enter few examples how we can ask
- Vector of one example is closest to given question