
Introduction to Robotics

for cognitive science

Dr. Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

Web page of the subject

www.agentspace.org/kv

Deep Learning

Artificial Intelligence

Machine learning

Deep learning

ANN

ANN … Artificial Neural Networks

What is neural network

classic

program

tens of

parameters

input

output

wished output

How do we

modify the

parameter to

decrease the

difference

between

output and

wished

output?

neural

network

millions of

parameters

input

output

wished output

Neural network

parameters
output

Sample output

sample

input

5

Building blocks of neural network

- anything corresponding to a function that we can express

and derivate via the symbolic way

Then we can define a loss function, typically the sum of

squares of differences between output and wished output

for all samples, and calculate its partial derivatives by

individual parameters

The value of the partial derivative for the current values

of parameters gives the direction in which we need to

modify the parameter to decrease the value of the loss

function

Training (Learning)

How do we modify parameters to

decrease the difference between

output and wished output?
neural

network

millions of

parameters

input

output

wished output

for each parameter, we know

the correct direction, even we

know that one parameter

needs to be modified more

than the other

but we do not know how much

so, we need to guess and try,

and return, which is the

training or learning process

Training algorithms

According to how many samples we derive the

gradient

• Gradient Descent

• Stochastic Gradient Descent

• Batch Gradient Descent

• Minibatch Gradient Descent

According to how we estimate suitable multiple of

the opposite gradient vector:

• rmsprop

• ADAM

Neural networks

• NN are composed of “neurons”

• The simplest NN has 1 neuron a few parameters

• Typical models for perception have at least tens

millions of neurons and parameters

• (Though the brain is a strong motivation for NN,

„neuron“ has almost nothing with the neuron cells)

1 neuron with linear activation

= linear regressor

bias

• Neuron calculates the scalar product of inputs with weights,

adds bias, and applies the activation function.

..
.

x0

x1

xn-1

Σ

..
.

w0

w1

wn-1

f

b

1

activation

function

weightsinputs

output

10

Linear regression

Σ

w0

w1

w2

b

11

3

4

7

2

7

3

5

2

4

4

4

1

0

9

109 444 352 727 134

w0 =

w1 =

w2 =

b =

?

?

?

?

Linear regression

Σ

w0

w1

w2

b

11

3

4

7

2

7

3

5

2

4

4

4

1

0

9

109 444 352 727 134

w0 =

w1 =

w2 =

b =

100

10

1

0

Perceptron

• Neural network from at least two fully

connected layers

• With linear activations it is an interesting

but not very useful machine

Σ

..
.

x1

x2

xn

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

..
.

y1

y2

ym

..
. ..
.

FC = fully connected
FC

1 neuron with sigmoid activation

= logistic regressor

bias

• Neuron calculates the scalar product of inputs with weights,

adds bias, and applies the activation function.

• Sigmoidal functions: sigmoid, hyperbolic tangent

..
.

x0

x1

xn-1

Σ

..
.

w0

w1

wn-1

f = σ

b

1

activation

function

weightsinputs

output

14

Perceptron

• With non-linear activation in the hidden

layer, it is an universal approximator

• It is still less useful in practice when we

process multi-dimensional data like images

Σ

..
.

x1

x2

xn

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

..
.

y1

y2

ym

..
. ..
.

FC = fully connected
FC

Universal approximation

multi-dimensional

functions

Convolutional neural networks

• Perceptron works for low dimensional data

• Images are high dimensional data

• Solution? We will code images to features

• How? By classic CV – by kernels

• What kernels? We will find by training

• Pixel where kernel is applied = neuron

• Kernel coefficients = shared weights of neurons

Kernel

18

weight changes contrast

1.5

1x1x1

0

bias

240x320x1 240x320x1

weight

Kernel

19

bias changes brightness

1.0

1x1x1

0.15

240x320x1 240x320x1

bias

weight

The Block of Convolutional Layers

1x1x1

weight

320x240x1

output

values
20 activation: linear

320x240x1

input

values

neurons share

1 weight and

1 bias

the layer contains

76800 neurons

but has 2

parameters only

input

dimension

76800

Training

sample input sample output

1.5

0.15

21

bias

weight

contrast

brightness

Kernel

22

Sobel (vertical) kernel provides vertical edges

3x3x3

240x320x3 240x320x1

-1/3

-1/3

-2/3

1/3

2/3

1/3

0

0

0

-1/3

-1/3

-2/3

1/3

2/3

1/3

0

0

0

-1/3

-1/3

-2/3

1/3

2/3

1/3

0

0

0

+0

bias

weights

The Block of Convolutional Layers

320x240

neurons

kernel 3x3x3

weights

320x240x1

output

values
23

1 bias

320x240x3

input

values

activation: linear

neurons share

27 weights and

1 bias

the layer contains

76800 neurons

and 28 parameters

input

dimension

230400

Training

sample input sample output

-1/3

-1/3

-2/3

1/3

2/3

1/3

0

0

0

-1/3

-1/3

-2/3

1/3

2/3

1/3

0

0

0

-1/3

-1/3

-2/3

1/3

2/3

1/3

0

0

0

+0
24

bias

weights

Sobel

kernel

Deap Learning

DL works with a data set

HU creates models that transform one data to other data

The key idea behind DL is creation of encoder (feature

extractors) and decodes (feature generators)

classifier

encoder decoder

...
60000 images 28×28

Autoencoder

encoder decoder

Encoder

(Extractor)encoder

+1.645

-1.645

-1.645

+1.6450

0

Decoder

(Generator)decoder

0

0

+1.645

-1.645

-1.645

+1.645

Fundamental features of

feature vectors

• Feature vector are points in a latent space

• Though only finite number of points

correspond to the samples from the dataset, all

points represent a reasonable instance of data

• The latent space has no holes (is not sparse)

and it is fluent (uniformly continuous)

(Convolutional) autoencoder

LATENT

SPACE

INPUT OUTPUTconvolutional layers

max pool sampling up

Encoder (the first half of autoencoder) transforms

image to features (point in the latent space) ...

feature

vector

Classifier

LATENT

SPACE

INPUT

O
U

T
P

U
T

Convolutional layers

max pool

... and for features perceptron works

also in practice

FC FC Softmax

Emotions

Plutchik's theory

Fear → feeling of being afraid, frightened, scared.

Anger → feeling angry. A stronger word for anger is rage

Sadness → feeling sad. Other words are sorrow, grief

Joy → feeling happy. Other words are happiness, gladness

Disgust → feeling something is wrong or nasty. Strong disapproval.

Surprise → being unprepared for something.

Trust → a positive emotion; admiration is stronger; acceptance is

weaker.

Anticipation → in the sense of looking forward positively to

something which is going to happen. Expectation is more neutral

- various lists of some global states of mind (7 – 40)

Example

Emotion recognition

• Having dataset,

• we can train a deep model which output

probabilities of individual emotions

• Of course, before emotion recognition, we

need to localize the face on images. This

task can be provided by another deep model

(detector)

Neutral Surprise Sad Happy

Generator

LATENT

SPACE

OUTPUT

sampling up

feature

vector

Dataset of robot’s postures

• 10 DOF, 60000 postures

• We can train autoencoder and dissect it into

the encoder and decoder

Example

fe
a
tu

re
s

o
u
tp

u
t

decoder

1x2
1x10

The posture generator

Generator

Detector

Classifier that is run in parallel over many

regions on the image

Classifier is materialized by perceptron and

all these perceptrons share weights

How do we build parallely operated

perceptron? Unbelievable: by two or three

blocks of the convolutional layers

Detector (You Look Only Once)

• It covers image by non-overlapping regions

• it combines classification and regression tasks for

each region and summarize them

• The classifier predicts

the probability that the

region belongs to the

object.

• The regressor predicts

the bounding box of

the object lying in the

region.

watch

watch

watch

face

face

How could we perform the classification and regression

tasks for each region? Well, we need to run the same

perceptron for each spot. In other words: we need a

building block of neural networks for running

perceptrons sharing weights in parallel. Surprisingly,

the block is already available to us: the block of

convolutional layers with kernel 1x1.

input

4

output

3

How could we perform the classification and regression

tasks for each region? Well, we need to run the same

perceptron for each spot. In other words: we need a

building block of neural networks for running

perceptrons sharing weights in parallel. Surprisingly,

the block is already available to us: the block of

convolutional layers with kernel 1x1.

How could we perform the classification and regression

tasks for each region? Well, we need to run the same

perceptron for each spot. In other words: we need a

building block of neural networks for running

perceptrons (sharing weights and biases) in parallel.

Surprisingly, the block is already available to us: the

block of convolutional layers with kernel 1x1.

input

1x1x4

output

1x1x3

input

13x13x4

output

13x13x3

When we feed input 13x13x4 we get output

13x13x3 corresponding to the production of 169

perceptrons (that shares weights and biases) running

in parallel.
block of 3 convolutional

layers with kernel 1x1

YOLO v1

features

convolutional layers

max pool

7

2
1
0

The output tensor 210x7 codes

maximally 210 detections, each

containing: relevance, category,

confidence, x, y, w, and h

(summarized by the special building

block called yolo)

1x1 1x1 1x1

yolo

• If we have a piece of a watch in one region,

it increases the probability of having it in

neighboring regions

• How could the parallel perceptrons

cooperate?

• We use kernel 3x3 for that

1x1 1x1 1x1 3x31x1 3x31x1 1x1 3x3

• How could we treat different sizes of

objects? We can run more processing

pipelines in parallel for 13x13, 26x26, and

52x52 regions

• Then, the less-detailed pipeline can advise

the more-detailed one

p
a
r
a
l
l
e
l

M
L
P

Encoder Encoder Encoder

YOLO v3

252 blocks, 5219 layers

13x13 26x26 52x52

26x26 52x52

[Redmon, Farhadi 2018]

Training Deep Neural Networks

• Depth (about 200 neurons) enables us to

design a sophisticated architecture.

However, it makes training much harder

(the problem o vanishing gradients).

• Therefore, we have to add building blocks

that give us a chance to handle the training.

YOLO v3 employs batch normalization and

residual connections for this purpose.

53

Batch

Normalization

Residuals

YOLO v3 schema

YOLO v3 output

• 13x13x255, 26x26x255, 52x52x255

• Each perceptron approximates three

detections, 255 = 3 x 85

• Each detection 85 = 4+1+80 contains:

4 … x, y, w, h

1 … confidence

80 … probabilities for individual categories

Anchors

• Each detection expresses x,y,w, and h relative

to a given anchor. YOLO employ three

anchors for each object size (nine altogether)

with different aspect ratio.

• Anchors in YOLO v3:

[116x90, 156x198, 373x326] (output 52x52)

[30x61, 62x45, 59x119] (output 26x26)

[10x13, 16x30, 33x23] (output 13x13)

Transfer learning

YOLO v3 provides the pre-trained model, trained on the COCO

dataset (80 categories):
person, bicycle, car, motorbike, aeroplane, bus, train, truck, boat, traffic light,

fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep, cow,

elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase,

frisbee, skis, snowboard, sports, ball, kite, baseball bat, baseball glove,

skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon,

bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut,

cake, chair, sofa, pottedplant, bed, diningtable, toilet, tvmonitor, laptop, mouse,

remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book,

clock, vase, scissors, teddy bear, hair drier, toothbrush

Starting training from the pre-trained model gives us a better

chance to train our custom detector.

Training YOLO v3

Processing the video
Works fine :)

	Snímka 1: Introduction to Robotics for cognitive science
	Snímka 2: Web page of the subject
	Snímka 3: Deep Learning
	Snímka 4: What is neural network
	Snímka 5: Neural network
	Snímka 6: Building blocks of neural network
	Snímka 7: Training (Learning)
	Snímka 8: Training algorithms
	Snímka 9: Neural networks
	Snímka 10: 1 neuron with linear activation = linear regressor
	Snímka 11: Linear regression
	Snímka 12: Linear regression
	Snímka 13: Perceptron
	Snímka 14: 1 neuron with sigmoid activation = logistic regressor
	Snímka 15: Perceptron
	Snímka 16: Universal approximation
	Snímka 17: Convolutional neural networks
	Snímka 18: Kernel
	Snímka 19: Kernel
	Snímka 20: The Block of Convolutional Layers
	Snímka 21: Training
	Snímka 22: Kernel
	Snímka 23: The Block of Convolutional Layers
	Snímka 24: Training
	Snímka 25: Deap Learning
	Snímka 26: Autoencoder
	Snímka 27: Encoder (Extractor)
	Snímka 28: Decoder (Generator)
	Snímka 29: Fundamental features of feature vectors
	Snímka 30: (Convolutional) autoencoder
	Snímka 31: Classifier
	Snímka 32: Emotions
	Snímka 33: Emotion recognition
	Snímka 34: Generator
	Snímka 35: Dataset of robot’s postures
	Snímka 36
	Snímka 37: Generator
	Snímka 38: Detector
	Snímka 39: Detector (You Look Only Once)
	Snímka 40
	Snímka 41
	Snímka 42
	Snímka 43
	Snímka 44
	Snímka 45
	Snímka 46
	Snímka 47
	Snímka 48
	Snímka 49: YOLO v1
	Snímka 50
	Snímka 51
	Snímka 52: YOLO v3
	Snímka 53: Training Deep Neural Networks
	Snímka 54: Batch Normalization
	Snímka 55: YOLO v3 schema
	Snímka 56: YOLO v3 output
	Snímka 57: Anchors
	Snímka 58: Transfer learning
	Snímka 59: Training YOLO v3
	Snímka 60: Processing the video Works fine :)

