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Deep Learning

Artificial Intelligence

Machine learning

Deep learning

ANN

ANN … Artificial Neural Networks
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Building blocks of neural network

- anything corresponding to a function that we can express 

and derivate via the symbolic way

Then we can define a loss function, typically the sum of 

squares of differences between output and wished output 

for all samples, and calculate its partial derivatives by 

individual parameters

The value of the partial derivative for the current values 

of parameters gives the direction in which we need to 

modify the parameter to decrease the value of the loss 

function



Training (Learning)

How do we modify parameters to 

decrease the difference between 

output and wished output?
neural

network

millions of 
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input

output

wished output

for each parameter, we know 

the correct direction, even we 

know that one parameter 

needs to be modified more 

than the other

but we do not know how much

so, we need to guess and try, 

and return, which is the 

training or learning process



Training algorithms

According to how many samples we derive the 

gradient

• Gradient Descent

• Stochastic Gradient Descent

• Batch Gradient Descent

• Minibatch Gradient Descent

According to how we estimate suitable multiple of 

the opposite gradient vector:

• rmsprop

• ADAM



Neural networks

• NN are composed of “neurons”

• The simplest NN has 1 neuron a few parameters

• Typical models for perception have at least tens 

millions of neurons and parameters

• (Though the brain is a strong motivation for NN, 

„neuron“ has almost nothing with the neuron cells)



1 neuron with linear activation

= linear regressor

bias

• Neuron calculates the scalar product of inputs with weights, 

adds bias, and applies the activation function.

..
.

x0

x1

xn-1

Σ

..
.

w0

w1

wn-1

f

b

1

activation

function

weightsinputs

output

10



Linear regression
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Linear regression
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Perceptron

• Neural network from at least two fully 

connected layers

• With linear activations it is an interesting 

but not very useful machine
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1 neuron with sigmoid activation

= logistic regressor

bias

• Neuron calculates the scalar product of inputs with weights, 

adds bias, and applies the activation function.

• Sigmoidal functions: sigmoid, hyperbolic tangent

..
.

x0

x1

xn-1

Σ

..
.

w0

w1

wn-1

f = σ

b

1

activation

function

weightsinputs

output

14



Perceptron

• With non-linear activation in the hidden 

layer, it is an universal approximator

• It is still less useful in practice when we 

process multi-dimensional data like images
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Universal approximation

multi-dimensional 

functions



Convolutional neural networks

• Perceptron works for low dimensional data

• Images are high dimensional data

• Solution? We will code images to features

• How? By classic CV – by kernels

• What kernels? We will find by training

• Pixel where kernel is applied = neuron

• Kernel coefficients = shared weights of neurons
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The Block of Convolutional Layers
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Training
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Kernel

22

Sobel (vertical) kernel provides vertical edges
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The Block of Convolutional Layers
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Training

sample input sample output
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Deap Learning

DL works with a data set

HU creates models that transform one data to other data

The key idea behind DL is creation of encoder (feature 

extractors) and decodes (feature generators)

classifier

encoder decoder

...
60000 images 28×28



Autoencoder

encoder decoder
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Fundamental features of 

feature vectors

• Feature vector are points in a latent space

• Though only finite number of points 

correspond to the samples from the dataset, all 

points represent a reasonable instance of data

• The latent space has no holes (is not sparse) 

and it is fluent (uniformly continuous)



(Convolutional) autoencoder
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Classifier
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Emotions

Plutchik's theory

Fear → feeling of being afraid, frightened, scared.

Anger → feeling angry. A stronger word for anger is rage

Sadness → feeling sad. Other words are sorrow, grief

Joy → feeling happy. Other words are happiness, gladness

Disgust → feeling something is wrong or nasty. Strong disapproval.

Surprise → being unprepared for something.

Trust → a positive emotion; admiration is stronger; acceptance is 

weaker.

Anticipation → in the sense of looking forward positively to 

something which is going to happen. Expectation is more neutral

- various lists of some global states of mind (7 – 40)

Example



Emotion recognition

• Having dataset,

• we can train a deep model which output 

probabilities of individual emotions

• Of course, before emotion recognition, we 

need to localize the face on images. This 

task can be provided by another deep model 

(detector)

Neutral Surprise Sad Happy
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Dataset of robot’s postures

• 10 DOF, 60000 postures

• We can train autoencoder and dissect it into 

the encoder and decoder

Example
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Detector

Classifier that is run in parallel over many 

regions on the image

Classifier is materialized by perceptron and 

all these perceptrons share weights

How do we build parallely operated 

perceptron? Unbelievable: by two or three 

blocks of the convolutional layers



Detector (You Look Only Once)

• It covers image by non-overlapping regions

• it combines classification and regression tasks for 

each region and summarize them

• The classifier predicts 

the probability that the 

region belongs to the 

object.

• The regressor predicts 

the bounding box of 

the object lying in the 

region.
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How could we perform the classification and regression 

tasks for each region? Well, we need to run the same 

perceptron for each spot. In other words: we need a 

building block of neural networks for running 

perceptrons sharing weights in parallel. Surprisingly, 

the block is already available to us: the block of 

convolutional layers with kernel 1x1.

input 

4

output 

3



How could we perform the classification and regression 

tasks for each region? Well, we need to run the same 

perceptron for each spot. In other words: we need a 

building block of neural networks for running 

perceptrons sharing weights in parallel. Surprisingly, 

the block is already available to us: the block of 

convolutional layers with kernel 1x1.



How could we perform the classification and regression 

tasks for each region? Well, we need to run the same 

perceptron for each spot. In other words: we need a 

building block of neural networks for running 

perceptrons (sharing weights and biases) in parallel. 

Surprisingly, the block is already available to us: the 

block of convolutional layers with kernel 1x1.

input 
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input 

13x13x4

output 

13x13x3

When we feed input 13x13x4 we get output 

13x13x3 corresponding to the production of 169 

perceptrons (that shares weights and biases) running 

in parallel.
block of 3 convolutional 

layers with kernel 1x1



YOLO v1

features

convolutional layers

max pool

7

2
1
0

The output tensor 210x7 codes 

maximally 210 detections, each 

containing: relevance, category, 

confidence, x, y, w, and h

(summarized by the special building 

block called yolo)

1x1 1x1 1x1

yolo



• If we have a piece of a watch in one region, 

it increases the probability of having it in 

neighboring regions

• How could the parallel perceptrons 

cooperate?

• We use kernel 3x3 for that

1x1 1x1 1x1 3x31x1 3x31x1 1x1 3x3



• How could we treat different sizes of 

objects? We can run more processing 

pipelines in parallel for 13x13, 26x26, and 

52x52 regions

• Then, the less-detailed pipeline can advise 

the more-detailed one
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[Redmon, Farhadi 2018]



Training Deep Neural Networks

• Depth (about 200 neurons) enables us to 

design a sophisticated architecture. 

However, it makes training much harder 

(the problem o vanishing gradients). 

• Therefore, we have to add building blocks 

that give us a chance to handle the training. 

YOLO v3 employs batch normalization and 

residual connections for this purpose.

53
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YOLO v3 schema



YOLO v3 output

• 13x13x255, 26x26x255, 52x52x255

• Each perceptron approximates three 

detections, 255 = 3 x 85

• Each detection 85 = 4+1+80  contains:

4 … x, y, w, h    

1 … confidence

80 … probabilities for individual categories



Anchors

• Each detection expresses x,y,w, and h relative 

to a given anchor. YOLO employ three 

anchors for each object size (nine altogether) 

with different aspect ratio.

• Anchors in YOLO v3:

[116x90, 156x198, 373x326] (output 52x52)

[30x61, 62x45, 59x119] (output 26x26)

[10x13, 16x30, 33x23] (output 13x13)



Transfer learning

YOLO v3 provides the pre-trained model, trained on the COCO 

dataset (80 categories):
person, bicycle, car, motorbike, aeroplane, bus, train, truck, boat, traffic light, 

fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep, cow, 

elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, 

frisbee, skis, snowboard, sports, ball, kite, baseball bat, baseball glove, 

skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon,

bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, 

cake, chair, sofa, pottedplant, bed, diningtable, toilet, tvmonitor, laptop, mouse,

remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book, 

clock, vase, scissors, teddy bear, hair drier, toothbrush

Starting training from the pre-trained model gives us a better 

chance to train our custom detector.



Training YOLO v3



Processing the video
Works fine :)
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