
Multi-agent systems

Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

http://www.agentspace.org/mas

teaser: platform: Java

file:///M:/andy/ukazky/mas2018/mas2018.m3u

Lecturer
RNDr. Andrej Lúčny, PhD.

• Dealing with real-time AI

• Co-founder of world-wide

operating company dealing with

hardware & software of

monitoring systems

• Developer in its daughter

company (computer vision)

• Co-founder of civil society

robotika.sk

• Former judge on ACM Scholastic

Programming Contest

• Judge on mobile robot contest

ISTROBOT

www.agentspace.org/andy

Mission

• Learn technologies of artificial intelligence methods

integration via multi-agent systems (object serialization,

process sychronization, inter-thread, inter-process and

network communication, operation in real time, knowledge

manipulation)

• Learn to implement multi-agent framework

• Learn to use existing multi-agent frameworks

• Learn more about development of the complex artificial

intelligent systems

• Try to use particular artificial intelligence methods (virtual

reality, phase correlation, HOG detector, Hough transform,

cascade regressor, deep neural network) - as a black-box

Inquiry

Have you written a program that successfully used:

• Java language

• anonymous class (e.g. TimeredTask)

• Object derived from Thread

• Serializable object

• Socket (network communication)

• Any middle-ware

• A multi-agent framework

?

Ranking

App. max. 44 point per term

(app. 12 weeks)

every week:

1 point for presence

1 point for the basic task

1 point for the best test

1 bod for homework

+ 1 possible point for the advanced

task or any outstanding result

Exam: 40 points per test

61-80 A

56-60 B

51-55 C

46-50 D

41-45 E

0-40 Fx

project is also possible

in case of a long illness

or foreign study

• We know many

interesting particular

methods of AI, e.g. we

can recognize face on

image.

• How to compound the

methods to a system for

building of complex

systems solving

complex tasks?

• Integration is easy if it is sufficient to put

methods into a pipeline

• Solution: we define

how methods

interacts and the

overall system

behavior emerges

from the interactions

• However, pipelines are not always sufficient

An example of Multi-Agent

System (MAS)

• A typical example of MAS is team playing
robosoccer: What program have we put to each
robot to win the match ?

Motivation of AOP

Minsky’s society of mind model:

• mind is compounded from agents

• mind works since a accurate group of

agents is activated at the accurate moment

• agent is any part or process of the mind

that by itself is simple enough to understand

– even though the interactions among groups

of such agents may produce phenomena that

are much harder to understand

Fodor’s mind model:

• modularity of mind

An example of AOP

• A good example is

control system of

humanoid robot: what

program we have to

put to individual

modules which

simulate its mind to get

a reasonable overall

behavior ?

MAS/AOP are domains dealing with systems which

exhibit a specific kind of modularity

The modularity is based on distribution and

decentralization. The system consists of modules

which we call agents. They are able to act in an

autonomous way without any necessary stimulus

(we say they are proactive)

The nature of agents

• Let’s go back to robosoccer

• What schema the program put to the robots

has ?

Nature of agent

• We put to robots the following program:

Sense

Select

Act

Agent as a process

Sense

Select

ActS
le
e
p

(Goal)

AGENT
Agent is a process

which continuously

senses its environment

and selects and

perform actions in the

environment upon the

sensing, following a

particular goal

E
n
v
ir
o
n
m
e
n
t

Warning: agent is frequently used metaphor, it is widely used for various purposes, it

can be not only an acting entity but also deputy for anything, a mobile entity, …etc.

Avoid use of non-sense abstractions.

Agent Life-cycle

initialize sleep sense select act

MAS

The network is

the computer

The computer

is the network

AOP

The transfer of real to virtual

• AOP can be considered as a new way how
to transfer objects from the real world to the
virtual world in computer

• From historical point of view there are three
ways of the transfer. We can classify them
following type of activity which can be tied
with the transferred object in computer

Types of activity

• passive entity (record)

• reactive entity (object)

• proactive entity (agent)

Types of activity

• all activity has to be

provided from outside

• entity can provide own

activity but only on a

stimulus from outside

• all activity is provided

by the entity, it is not

needed and even it is

not possible to invoke

activities from outsides

• structured

programming

• object-

oriented

programming

• agent-

oriented

programming

Programming without structures

#include <math.h>

int main() {

double x=0.0, y=5.0, fi=0.56;

int t;

for (t=0; t<10; t++) {

x += cos(fi);

y -= sin(fi);

sleep(1);

}

}

Structured programming

#include <math.h>

typedef struct ball {

double x;

double y;

} BALL;

void move(

BALL *bl,

double fi

){

bl->x += cos(fi);

bl->y -= sin(fi);

}

int main() {

BALL b;

double alpha = 0.56;

int t;

b.x = 0.0; b.y = 5.0;

for (t=0; t<10; t++) {

move(&b,alpha);

sleep(1);

}

}

OOP
class Ball {

private:

double x;

double y;

public:

Ball(double _x, double_y);

void move(double fi);

}

void Ball::move(

double fi

){

x += cos(fi);

y -= sin(fi);

}

Ball::Ball (double _x,

double_y) {

x = _x;

y = _y;

}

int main() {

Ball *b =

new Ball(1.0, 5.0);

double alpha = 0.56;

int t;

for (t=0; t<10; t++) {

b->move(alpha);

sleep(1);

}

delete b;

}

AOP
class Ball : Agent {

private:

double x;

double y;

void move (double fi);

void handleEvent();

public:

Ball(double _x,double_y);

}

Ball::Ball (double _x,

double_y) {

x = _x;

y = _y;

attachTimer(1);

}

Ball::handleEvent() {

double alpha = (double)

getSpace().get(˝fi˝);

this->move(alpha);

}

void Ball::move(…){…}

int main() {

Space space =

Space::getInstance();

space->put(˝fi˝,0.56);

Agent b =

new Ball(1.0,5.0);

sleep(10);

delete b;

}

Agents
Communication

among agents
Development

method

ARCHITECTURE

Multi-agent system

Communication among agents

Communication

direct – to address indirect – through

environment

Counter side reference

static address named data in environment

Communication among agents

Communication among agents

Communication

direct – to an address indirect – through

environment

Space space =

Space::getInstance();

space->put(˝fi˝,0.56);

send(g,INFROM,

˝(fi 0.56)˝);

Communication among agents is

complicated bacause:

• Agents can be distributed on more

computers or platfoms; e.g., one is

written in C++ for 32 bit Windows and

other is Java for 64 bit Linux

• They developed by different people on

different time and place

Communicated data:

• raw data

• typed data

• representation language

(structured, semi-structured)

Communication envelope:

• communication language

00001010 0000000

Integer 10

“(age 10 years)”

“(ask-if (...))”

“<age> ten </age>”

Communication among agents

Marshalling / Demarshalling

{ 2, “hallo” } { II, “HALLO” }

…010101110100001…
marshalling demarshalling

• binary form

• text form – based on representation language

import java.io.*;

public class Ball implements Serializable {

public static final long serialVersionUID = 112132444L;

float radius;
public float x;
public float y;

public Ball (float radius) {
this.radius = radius;

}

public String toString () {
return radius+"["+x+","+y+"]";

}

}

Serializable object (Java)

Marshalling
import java.io.*;

public class Marshall {

public static void main (String[] args) throws Exception {
Ball b = new Ball(1.0f);
b.x = 0.0f; b.y = 0.0f;
ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
ObjectOutputStream marshaller = new ObjectOutputStream(byteStream);
marshaller.writeObject(b);
byte[] bytes = byteStream.toByteArray();
System.out.println(bytes.length);
for (int i=0; i<bytes.length; i++) System.out.print(bytes[i]+" ");
System.out.println();

}

}

Demarshalling
import java.io.*;

public class Demarshall {

public static void main (String[] args) throws Exception {
byte[] marshalledObject = {

-84, -19, 0, 5, 115, 114, 0, 5, 71, 117, 108, 107, 97,
0, 0, 0, 0, 6, -81, 1, 92, 2, 0, 3, 70, 0, 6, 114, 97,
100, 105, 117, 115, 70, 0, 1, 120, 70, 0, 1, 121, 120,
112, 63, -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

};
ByteArrayInputStream byteStream = new

ByteArrayInputStream(marshalledObject);
ObjectInputStream demarshaller = new

ObjectInputStream(byteStream);
Ball b = (Ball) demarshaller.readObject();
System.out.println(b); // vypise 1.0[0.0,0.0]

}

}

Languages for data communication

among agents

• Representation language – expression of

communication content (what is

communicated)

• Communication language – expression of

communication envelope (how it is

communicated)

Representation language

• KIF – common syntax and semantics;

ontology based on vocabulary

• XML – common syntax, one ontology can

be translated to others

KIF (Knowledge Interchange Format)

• syntax – LISP

• semantics – one big vocabulary

When we want to express point [1, 1] in 2D plane,

we need to check vocabulary and we find that we

can use:

(point (euclid-coordinates 1 1))

or

(point (polar-coordinates 1.1412136 0.7853981))

(instance simultaneousProcess BinaryPredicate)

(documentation simultaneousProcess
"(simultaneousProcess ?Proc1 ?Proc2) means that processes
?Proc1 ?Proc2 cooccur at the same object, but not
necessarily at the same region. "

)

(<=>
(simultaneousProcess ?Proc1 ?Proc2)
(and (cooccur ?Proc1 ?Proc2)

(exists (?object)
(and (patient ?Proc1 ?Object)

(patient ?Proc2 ?Object)))))

KIF - Example

SUMO (Suggested Upper Merged Ontology)

• http://www.ontologyportal.org/

• KIF is ontologic language

• SUMO is ontologic vocabulary written in KIF

SUMO - Examples

(=>
(instance ?DRIVE Driving)
(exists (?VEHICLE)

(and
(instance ?VEHICLE Vehicle)
(patient ?DRIVE ?VEHICLE))))

(=>
(and

(instance ?SUBSTANCE PlantSubstance)
(instance ?PLANT Organism)
(part ?SUBSTANCE ?PLANT))

(instance ?PLANT Plant))

XML

<tag attribute=value … >
data

</tag>

<tag attribute=value ... />

<? … ?>

<!-- remark -->

<![CDATA[…]]>

element with data

empty element

directive

remark

raw data

& " ' < >

XML

<?xml version=“1.0” ?>

<announcement>

<going-to who=“007”>

10 10 <stop/>

</going-to>

</announcement>

<?xml version=“1.0” ?>

<announce-going-to>

007 10 10 <stop/>

</announce-going-to>

DTD, DSD, RELAX NG, XML Schema

XML Transformer XSLT

Elementy:
<xsl:attribute-set>
<xsl:decimal-format>
<xsl:import>
<xsl:include>
<xsl:key>
<xsl:namespace-alias>
<xsl:output>
<xsl:param>
<xsl:preserve-space>
<xsl:strip-space>
<xsl:template>
<xsl:variable>
<xsl:script>

Inštrukcie template:
<xsl:apply-imports>
<xsl:apply-templates>
<xsl:attribute>
<xsl:call-template>
<xsl:choose>
<xsl:comment>
<xsl:copy>
<xsl:copy-of>
<xsl:element>
<xsl:fallback>
<xsl:for-each>
<xsl:if>
<xsl:message>
<xsl:number>
<xsl:processing-instruction>
<xsl:text>
<xsl:value-of>
<xsl:variable>

match= name= priority= mode= select= disable-output-escaping=

XSLT
<?xml version=“1.0” ?>

<xsl:stylesheet version=“1.0” xmlns:xsl= http://www. w3.org/1999/XSL/Transform>

<xsl:template match=“/annoucement”>

<oznam-idem-na>

<xsl:apply-templates select=“going-to”/>

<xsl:value-of select=“going-to”/>

</oznam-idem-na>

</xsl:template>

<xsl:template match=“going-to”>

<xsl:value-of select=“@who”/>

</xsl:template>

XSLT

<?xml version=“1.0” ?>

<announcement>

<going-to who=“007”>

10 10 <stop/>

</going-to>

</announcement>

<?xml version=“1.0” ?>

<oznam-idem-na>

007 10 10 <stop/>

</oznam-idem-na>

How to use XML

<ball>

<radius>1</radius>

</ball>

(semi-structured data)

<ball radius=“1”/>

(structured data)

Communication language

• speech acts – KQML

• syntax – LISP-like frames

(performative

:parameter value

:parameter value

)

KQML (Knowledge Query Manipulation Language)

Performatives:
Achieve sender asks receiver to perform the content
Advertise sender advertises a service and its request form
Ask-all sender asks for all responses to the question in the content
Ask-one sender asks for one response to the question in the content
Broker-one sender asks what agent can answer the question
Delete-one sender announces that the content is not valid anymore
Insert sender announces that the content is valid and should be concerned
Ready sender announces that it can provide content
Register sender registers itself, announces its existence
Recommend-one sender asks to recommend agent which knows something
Recruit-one sender asks to find agent which knows something
Sorry sender has not the required information
Subscribe sender asks to be informed when something changes
Tell sender send something to receiver
...

KQML

Parameters
:sender who sends the message
:receiver who receives the message
:from from whom the messages comes
:to to whom the message is sent
:in-reply-to request for marking the answer
:reply-with marking the answer
:language syntax
:ontology semantics
:content content
...

KQML- scenarios

Direct communication

1. Ask(x)

2. Tell(x’)

1. Insert(x)

Know that …

Tell me …

KQML- scenarios

Indirect communication

1. Ask(x)

2. Tell(x’)

1. Insert(x)

Notice that …

What do you notice about x ?

KQML- scenarios

Indirect communication– request on trigger

1. Subscribe(x)

2. Tell(x’)

3. Tell(x’)

If somebody tells, I want to listen

KQML- scenarios

Indirect communication – request bidding

2. Broker-one(x)
1. Advertise(x)

5. Tell(x’)

Find answer to my request

3. Ask(x)

4. Tell(x’)

KQML- scenarios

Direct communication – request bidding

2. Recomend(x)
1. Advertise(x)

3. Tell(y)

Recommend me who can answer my question...

4. Ask(x)

5. Tell(x’)

y

What is this?

• meta-agent

• facilitator

• container - mediator

• space

• (environment)

