
Multi-agent systems

Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

http://www.agentspace.org/mas

LAN/WAN

communication tier

application tier

middle tier

Software implementing

middle tier =

middleware

MAS as middleware
• MAS implementation is

based on some existing

communication base

• MAS is a special kinf od

middleware, mostly based on

message passing

• it can be based on another

middleware (typically based on

distributed object)

application

presentation

session

transport

network

datalink

physical co
m

m
u

n
ic

at
io

n

m
id

d
le

MAS API

• What interface is provided to the application layer

by a multi-agent system implementation?

There are two choices

- Prevailing direct communication (peer-to-peer)

(e.g. JADE)

- Prevailing indirect communication (stigmergic

communication) (e.g. Cougaar)

MAS

with prevailing

direct

communication

Services of the direct

communication
The basic service is

• asynchronous transmission of messages, i.e.
calling a SEND method with convenient
parameters

 in generall, this method can call directly a code
of the receiver – so called callback (typical for
actors) or push the message into a shared
memory from which it is popped by the thread
of the receiver (typical for agents) so the agent
need to call RECEIVE method

• Java Agent DEvelopment Framework

• Middleware implemented via RMI

• It provides

– communication among agents (ACL) and its

initialization (AMS, DF)

– paralel course of agents (Jade container)

• Implemention of FIPA 97 in Java

FIPA 97

ACL = Agent Communication Language

Attributes of ACL performatives

Example of message in ACL (& FIPA-SL)

Message sent via Java Serialization

(INFORM

 :sender (agent-identifier :name Writer@10.102.101.216:1099/JADE)

 :receiver (set (agent-identifier :name Reader@10.102.101.216:1099/JADE))

 :X-JADE-Encoding Base64

 :content

"rO0ABXNyAAlNeU1lc3NhZ2X3XJJaURjcRQIAAUwAB2NvbnRlbnR0ABJMamF2

YS9sYW5nL1N0cmluZzt4cHQACkFob2ogSmVsa2E="

 :language JavaSerialization)

Message sent via XML

(INFORM

 :sender (agent-identifier :name Writer@192.168.1.15:1099/JADE)

 :receiver (set (agent-identifier :name Reader@192.168.1.15:1099/JADE))

 :content "<primitive type=\"FLOAT\" value=\"3.1415927F\"/>"

 :language XML :ontology FIPA-Agent-Management)

Content type in the ACL

(Marshalling)

• FIPA-SL, FIPA-KIF

• Java Serialization (RMI)

• ACL/XML

• ACL/Bit-efficient

JADE

JVM JVM

TCP sockets used by JADE

JADE container

JADE container

port

1099

port

1099

port

1098
Agent Agent

Jade container

• Asynchronous model of agents

• Agent has own thread, even more threads

• Container hides difference between local
and network communication (it contains
and hides all neccessary stubs)

Jade container

• Each container occupies one JVM

• There can be more containter on one node

but just one of them can be the main

container (and this one occupies the port

1099)

• Container can connect to a main containter

on another node and from that moment agent

in the both containers can communicate

Jade: Agent

• Agent beží len v containeri, ktorý realizuje

jeho rozhranie

• Agent má metódu setup()

• V nej môže vo svojom vlákne realizovať

svoju činnosť, ale častejšie je, že inicializuje

rôzne správania metódou
addBehaviour()

Jade: Behaviour

• SimpleBehavior

• CyclicBehaviour

• TickerBehaviour

• OneShotBehaviour

• ReceiveBehaviour

• WakerBehaviour

• ParallelBehavior

protected void setup() {
 …
 addBehaviour(
 new MsgReceiver (this, MessageTemplate.MatchAll(), Long.MAX_VALUE,
 new DataStore(), "ObjectReaderAgent") {
 protected void handleMessage (ACLMessage msg) {
 …
 }
);
}

protected void setup() {
 …
 addBehaviour(
 new CyclicBehaviour () {
 public void action () {
 …
 }
);
}

Jade: Behaviour – examples

Jade Agent Management System

• Each agent has unique AID and name and it is
located in certain container

• For being visible by the other agents, it can
register one or more services

• It can find AID of other agents by name of their
services (yellow pages)

• It can find AID of other agents by their location
(white pages)

• It can use ACL for mutual communication with
those agents which AID it knows

Jade Directory Facilitator

• DF serves for registration of services

• It is able to organize the services in so

called directories which are global, i.e. same

for all containers.

Registration

 DFAgentDescription dfd = new DFAgentDescription();
 ServiceDescription sd = new ServiceDescription();
 sd.setType(„ServiceName");
 sd.setName(getName());
 dfd.addServices(sd);
 dfd.setName(getAID());
 try {
 DFService.register(this,dfd);
 } catch (FIPAException e) {
 }

Search for agent by service

 AID reader;
 DFAgentDescription dfd = new DFAgentDescription();
 ServiceDescription sd = new ServiceDescription();
 sd.setType("ServiceName");
 dfd.addServices(sd);
 try {
 for (;;) {
 DFAgentDescription[] result = DFService.search(this,dfd);
 if ((result != null) && (result.length > 0)) {
 dfd = result[0];
 reader = dfd.getName();
 break;
 }
 Thread.sleep(1000);
 }
 } catch (Exception e) {
 }

Jade GUI

More reading

• http://jade.tilab.com/

• http://jade.tilab.com/download/add-ons/

• http://www.iro.umontreal.ca/~vaucher/Agents/Jade/

JadePrimer.html

MAS with indirect communication

is a distributed system of type:

Peer-to-peer

• The central parts of the

system are minimized to a

naming service

• Each node is a server for all

other peers and a client of

that peers

