
Multi-agent systems

Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

http://www.agentspace.org/mas

MAS API

• What interface is provided to the application layer

by a multi-agent system implementation?

There are two choices

- Prevailing direct communication (peer-to-peer)

(e.g. JADE)

- Prevailing indirect communication (stigmergic

communication) (e.g. Cougaar)

MAS

with prevailing

indirect

communication

Indirect communication services

• Space provides to agents services, by which

they can manipulate data stored in the Space

• The services are

READ

WRITE

DELETE

• Non-blocking and blocking (synchronized)

Indirect communication platform

example

Message Transport

Agent A

Blackboard

Plugin

Y

Node 1

Relay Data

Message Transport

Agent B

Blackboard

Node 2

Relay Data
Plugin

Q

Plugin

X Local Data

Message

Cougaar

Client-Server

• relation between two processes, one of them

(server) provides a service from another one

(client) on its request

server client

activity

• MAS with indirect communication is a distributed

system of type:

Structural organization of server

Server can process request in various ways:

1. Each request separately

2. It can remember state of communication in data

attached to request and response

3. It can remember state of communication at the server

side

Structural organization of server

Server can process request in various ways:

1. Each request separately

2. It can remember state of communication in data

attached to request and response

3. It can remember state of communication at the server

side

easy

dangerous

universal

- in structure called port

MAS is a special kind of DS

MAS can be treated as a special case of distributed

system of the client-server type where:

• server does not contain any application code

• server provides just communication services

• we aim to re-use sever for another application

(reusability)

• client is equipped by a library which provide

comfort access to the server

• the server + the library = middleware

Transformation from Client-Server to

Agent-Space-Agent

clients

communication

interface

services

space

agents

Data flows

producer

consumer

producer

consumer

producer

consumer

traditional client-server agent-space-agent

Features of Space

• It is server for agents which are its clients

• It is independent from application domain

• It must be reliable and fast (effective

algorithms have to used) as it is a bottle-

neck)

• It provides services which materialize

communication among klients

• It works with a kind of marshalling (which is

usually based on a representation language)

Representation and communication

language

As a result, we can (for indirect communication)
make definition of representation and
communication more exact:

• Only agent knows representation language, it
is not a part of middleware, it codes that part
of data which space does not unpack and/or
touch

• Both space and agent library knows
communication language, it is a necessary part
of middle ware

Further services of the indirect

communication

• Further services:

- trigger registration (notification)

- mass operations over the data in the Space, e.g.

based on mask

• Synchronization: each service is perfomed without

interruption by another one, agent can perform a

list of the services without interruption

Trigger

Agent

proxy

Space

(1) event
(2) notification

(3) action

• Proxy has own thread

• Proxy opens and keeps alive

a socket

• Notification is implemented

as a delayed answer

Timer

Agent

proxy

Space

(1) tick

(2) action

timer

• Timer has an own thread

and a queue of timered

tasks, sorted by time

• proxy is a timered task

managed by the timer

• Proxy is unblocking the

agent thread

Reference of the stored data

• UUID and so

• name

• name unification

• data unification (in representation language)

Implementation

• history: all implementation are comming

from the LINDA programming language

(1985, for parallel programming)

• no standards

• proprietary solutions

LINDA Tupple Space

Data structure containing tuples of terms in form of LISP lists
equipped by

• out(t) writes a new tuple

• in(t) read and remove certain tuple; if such a tuple is not
available, the reading process is blocked until it occurs

• rd(t) does the same as in(t), just it does not remove the tuple

• inp(t) return TRUE and remove certain tuple if it is
available; it returns FALSE otherwise

• rdp(t) does the same as inp(t), just it does not remove the
tuple

Specification of the read tuple is based on data unification

Java Space

• part of Java Jini package, which was

develop to change networks of computers

and services to network of services and

things, its main part is Java Lookup Service

• It is a middleware built over RMI

Java Space
package net.jini.space;

import java.rmi.*

public interface JavaSpace {

Lease write(Entry entry, Transaction txn, long lease);

Entry read(Entry tmpl, Transaction txn, long timeout);

Entry readIfExists(Entry tmpl, Transaction txn, long

timeout);

Entry take(Entry tmpl, Transaction txn, long timeout);

Entry takeIfExists(Entry tmpl, Transaction txn, long

timeout);

EventRegistration notify(Entry tmpl, Transaction txn,

RemoteEventListener ln, long lease,

MarshalledObject handback);

Entry snapshot(Entry e);

}

//throws clauses not shown

Data leasing

– time validity

• Java Space introduced limited time validity
of the data stored in Space

• Space is taking care of the leased data
removal when they expires after some
period.

• The removal can be implemented passively,
but it can be more accurate if it is treated by
a timerred task or a dedicated thread.

Agent-Space

• Multi-agent architecture developed at FMFI

UK Bratislava in 1997-2004

• It is an expression of traditional ideas of

Brooks and Minsky by a new language

(MAS with indirect communication)

Jozef Kelemen

R. Brooks:

Subsumption

architecture

M. Minsky:

The Society

of Mind

MAS:

Reactive

agents

Agent-Space

architecture

An universal software

tool for agent

oriented

programming

Coordination

programming

LINDA

Real-Time

System

pyr. client-server

Modelling of

biological

system

Industrial

applications

agent agent

write

read

Architecture Agent-Space

• System consists

of agents

• Agents

communicate

through Space

initialize sleep sense select act

Implementation in C++/Java

• Each agent is object with own thread

• It calls read and write methods of singleton

object Space

• Agent is regularly waken up by timer or

trigger (by the write operation performed by

another agent)

agent

timer

trigger

class MyAgent2 : public Agent {
protected:

void init (string args) {
trigger_attach("*",TRIGGER_MATCHING);
}

void sense_select_act (int pid) {
int a = space_read("a",0);
cout << "a = " << it->value << endl;

}

public:
MyAgent2 (string args) :
Agent(args) {};

};

int main () {
MyAgent1 a1("");
MyAgent2 a2("");
getch();

}

#include <iostream>
#include <conio.h>
#include "agentspace.h"
using namespace std;

class MyAgent1 : public Agent {
private:
int i;

protected:

void init (string args) {
i = 0;
timer_attach(1000,1000);

}

void sense_select_act (int pid) {
i++;
cout << "a := " << i << endl;
space_write("a",i,1500);

}

public:
MyAgent1 (string args) :
Agent(args) {};

};

Code example

public class Agent2 extends Agent {

int i;

public void init(String args[]) {

attachTrigger("a");

}

public void senseSelectAct() {

i = (Integer) read("a",-1);

System.out.println("read "+i);

}

}

package org.agentspace.demo;

import org.agentspace.*;

public class Agent1 extends Agent {

int i = 0;

public void init(String[] args) {

attachTimer(1000);

}

public void senseSelectAct() {

System.out.println("write: "+i);

write("a",i++);

}

}

public class Starter {

public static void main(String[] args) {

new SchdProcess("space",“org.agentspace.SpaceFactory",new String[]{"DATA"});

new SchdProcess("agent1",“org.agentspace.demo.Agent1",new String[]{});

new SchdProcess("agent2",“org.agentspace.demo.Agent2", new String[]{});

}

}

Code example

Implementation of

the Space services

in distributed environments

• via RMI

• via web services

• ...

Web services

• Extension of the HTTP protocol

GET (POST) “URL”

OK + HTML

Browser
Web

server

GET /info/index.html HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-excel,

application/vnd.ms-powerpoint, application/msword, application/x-shockwave-flash, */*

Referer: http://www.swim.sk

Accept-Language: sk,en-us;q=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Host: www.swim.sk

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 200 OK

Date: Sun, 11 Sep 2005 11:09:03 GMT

Server: Apache/2.0.54 (Debian GNU/Linux) mod_python/3.1.3 Python/2.3.5 PHP/4.3.10-16

mod_ssl/2.0.54 OpenSSL/0.9.7e mod_perl/1.999.21 Perl/v5.8.4

X-Powered-By: PHP/4.3.10-16

Content-Length: 2178

Connection: close

Content-Type: text/html

<html>

<meta http-equiv='Content-Type' content='text/html; charset=windows-1250'>

<body> ahoj </body>

</html>
HTTP

Web services

?param1=value1¶m2=value2 pre GET

alebo napr. XML pre POST

GET (POST) “special URL”

OK + špec.

Browser
Web

server

for instance:

XMLHttpRequest

for instance:

servlet

