
Multi-agent systems

Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

http://www.agentspace.org/mas

MAS via IPC

Inter Process Communication

History of IPC:

• signals

• shared memory

• pipe, socket

• message passing

Signals

void handler (int sig) {
// signal received

}

void main ()
{

signal(SIGUSR1,handler);
…

}

…
pid = …
kill(pid,SIGUSR1);
…

event = CreateEvent(NULL, TRUE,
FALSE, TEXT("Event"));

…
SetEvent(event)

event = CreateEvent(NULL, TRUE,
FALSE, TEXT("Event"));

…
waitForSingleObject (event,

timeout);

Shared memory

ch = new RandomAccessFile(name, "rw");
buf = ch.getChannel().map(FileChannel.MapMode.READ_WRITE, 0, size);
for (...) {

byte b = buf.get();
...

}
buf.rewind();
...

ch = new RandomAccessFile(name, "rw");
buf = ch.getChannel().map(FileChannel.MapMode.READ_WRITE, 0, size);
for (...) {

byte b = ...;
buf.put(b);
...

}
buf.rewind();
...

Shared Memory - Synchronization

seq

writer reader

timer timer

write read

seq

writeread

Synchronization among processes

HANDLE ghWriteEvent;

ghWriteEvent = CreateEvent(
NULL, // default security attributes
TRUE, // manual-reset event
FALSE, // initial state is nonsignaled
TEXT(_name) // object name

);

DWORD dwWaitResult;
dwWaitResult = WaitForSingleObject(

ghWriteEvent, // event handle
INFINITE

); // indefinite wait

ResetEvent(ghWriteEvent);

• Dependent on platform (Windows), from Java we call it via JNI

• Process waiting on event:

Synchronization among processes

HANDLE ghWriteEvent;

ghWriteEvent = CreateEvent(
NULL, // default security attributes
TRUE, // manual-reset event
FALSE, // initial state is nonsignaled
TEXT(_name) // object name

);

SetEvent(ghWriteEvent);

• Dependent on platform (Windows), from Java we call it via JNI

• Process triggering the event:

Message passing

SRR

Processes: pid

pid1 pid2

OS

One process can communicate with

other when it knows its process ID

Processes: names

pid1 pid2

process

manager

Everybody

knows own

pid and parent

pid

„Please, let

others to know

that I am 21034.

John“

It manage process

table, provided pids

and register names

its pid is fixed: 1

„Please, tell me

pid of John“

Processes: names

pid1 pid2

process

manager

Everybody

knows own

pid and parent

pid

„Please, let

others to know

that I am 21034.

John“

It manage process

table, provided pids

and register names

its pid is fixed: 1

„Please, tell me

pid of John“

name_locate() name_attach()

Processes: communication

pid1 pid2

OS

data

kernel

Send() Receive()

Reply()

SRR model

Processes: states

SEND-BLOCKED

REPLY-BLOCKED

RECEIVE-

BLOCKED
READY

SRR model

SRR model

data

data

Receive()

Reply()

Send()

senderreceiver

RECEIVE-

BLOCKED

READY

REPLY-

BLOCKED

READY

READY

READY

SRR model

data

data

Receive()

Reply()

Send()

senderreceiver

SEND-

BLOCKED

READY

REPLY-

BLOCKED

READY

READY

SRR model

data

data

Receive()

Reply()

Send()

senderreceiver

RECEIVE-

BLOCKED

READY

REPLY-

BLOCKED

READY

READY

READY

data

data

Receive()

Reply()

Send()

senderreceiver

SEND-

BLOCKED

READY

REPLY-

BLOCKED

READY

READY

Which case is preferred by programmer ?

Primitives

SRR model

Send (pid, send-data, replied-data, sizeof-send-data, sizeof-replied-data);

pid-of-sender = Receive (0, send-data, size-of-send-data);

Reply(pid-of-sender, replied-data, sizeof-replied-data);

Who does grant that

these sizes are

corresponding ?

SRR model

Non blocking message passing

• virtual process proxy

• virtual proces timer

SRR model

proxy pid

Receive()

Trigger()

userowner

RECEIVE-

BLOCKED

READY

READY

READY

P

proxy

proxy pid

Receive()

Trigger()

userowner

READY READY

P

proxy

P

proxy

pidp = proxy_attach(0,0,0,-1)

Trigger(pidp)

SRR model

Receive()

owner

RECEIVE-

BLOCKED

READY

READY

P T

proxy timer

Receive()
RECEIVE-

BLOCKED

READY

P T

proxy timer

Receive()
RECEIVE-

BLOCKED

READY

P T

proxy timer

pidt = timer_create(-pidp)

timer_set(pidt, typ, sec0, nsec0, sec, nsec)

TIMER

Problems of communication

between processes

• deadlock

• livelock

• lagged response

Solution

• architecture - rules for developer

One possible solution:

pyramidal client-server architecture

Client-Server

In SRR model

• Server is receiver

• Client is sender

Of course a process and be sever and client in the same

time concerning more relations to other different

processes. Thus we can find both Receive and Send

calls in its code

where ?

Pyramidal architecture

Client-Server

1. System is divided to levels

2. Each server is put to certain level

3. Each client must be put to higher level than its

server

Pyramidal architecture

Client-Server

?

level 3

level 2

level 1

?

server

client

Pyramidálna architektúra

Client-Server

devices

user

level 3

level 2

level 1

devices

user

level 3

level 2

level 1

C
o

m
m

u
n

ic
at

io
n

 w
it

h
 c

li
en

ts

C
o
o

p
eratio

n
 w

ith
 o

th
er p

ro
cesses

kód

Server structure

typedef struct server_msg {

short header;

short action;

union {

...

} data;

};

#define SERVER_HAEDER 'SH'

#define SERVER_ACTION1 'A1'

...

#define SERVER_ACTIONx 'Ax'

void main ()

{

struct server_msg msg;

// inicialization

if (name_attach("...") == -1) return;

for (;;) {

pid = Receive(0,&msg,sizeof(msg));

if (msg.header != SERVER_HEADER)

continue;

switch (msg.action) {

case SERVER_ACTION1:

// process msg

break;

...

case SERVER_ACTIONx:

...

break;

}

Reply(pid,&msg,sizeof(msg));

}

}

void main ()

{

struct server_msg msg;

// inicialization

pid = name_locate("...");

msg.header = SERVER_HEADER;

msg.action = SERVER_ACTIONy;

// prepare msg.data;

Send(pid,&msg,&msg,

sizeof(msg),sizeof(msg));

// process msg.data

}

void main ()

{

// inicialization

pids = name_locate("...");

pidp = proxy_attach();

pidt = timer_create(-pidp)

timer_set(pidt,RELATIVE,0,0,1,0);

for (;;) {

pid = Receive(0,NULL,0);

if (pid == pidp) {

// prepare msg

Send(pids,&msg,&msg,

sizeof(msg),sizeof(msg));

// process msg

}

}

}

Server

Client - utility

Client - data collector

Server Decomposition

Problem of the lagged response:

memory-unstable solution:

• call fork() and run separated process which treats

the requested service

memory-stable solution (the only solution if we have

no threads):

• Master - slave

Master - slave

Solution: master – server, slave – auxiliary task

which is launched by master

Master can pass treatment of a service to slave.

Thus it is available for serving further clients

(slave is not client!)

Slave

void main ()

{

pid_m = getppid();

Send(pid_m,...); //what do you wish, master ?

for (;;) {

task ();

Send(pid_m,...); //your wish is completed,

//what do you which next master?

}

}

In what SRR state the slave spends major part of its course ?

Master

main ()

{

struct server_msg msg;

struct server_port *port;

// inicialization

ports_init();

ihave = 0; towhom = 0; spid = start_slave(); // spawn

for (;;) {

pid = Receive(0,&msg,sizeof(msg));

if (pid == spid) {

ihave = 1;

if (towhom > 0) Reply(towhom,...);

}

if (msg.header != SERVER_HEADER)

continue;

ports_reinit();

if ((port = port_get(pid)) == -1) {

port = port_new();

port_setdefaults(port);

}

switch (msg.action) {

case SERVER_ACTION1:

// process *port and msg

Reply(pid,&msg,sizeof(msg));

break;

...

case SERVER_ACTIONx:

Reply(spid,...); towhom = pid;

break;

}

}}

Servers on the same level

A B

• A is client of server B

• B je client of server A

How to solve it ?

This problem is not often

but typical for pyramidal

client-server architecture

Ferryman

A

B

C

B cannot send to A

Ferryman

A

B

C
C is client of A and slave of B

Servers on the same level

Solution: ferryman + buffering

void main ()

{

pid_low = getppid();

pid_high = name_locate("...");

for (;;) {

Send(pid_low,...); //what do you want to send, master?

Send(pid_high,...);//you client would like to send you

this, server

}

}

Ferrymen is slave of one server and client of the other

Servers on the same level

Ferryman’s code is very similar to code of agent

This inspire us for another architecture, which

would not solve communication between servers

on the same level as a special case, but which

would employ solution of the case as the

fundamental principle of communication among

processes

Data flow via agent

data flow

agent

ask tell

Data flow via direct

communication among agents

producer

consumers

• deadlock problem is not addressed

producer

consumers

Data flow via indirect

communication among agents

• deadlock is not possible

Agent-Space

• architecture which solves communication

problems among processes

• based on indirect communication among agents

Every process is

• agent

or

• space

Agent
void main ()

{

// initialization

...

pidp = proxy_attach();

pidt = timer_create(-pidp);

timer_set(pidt,RELATIVE,0,0,...);

for (;;) {

pid = Receive(0,NULL,0);

if (pid == pidp) {

// sense

Send(...);

Send(...);

Send(...); ...

// select

...

// act

Send(...);

Send(...);

Send(...); ...

}

}

}

driven by timer

Agent
void main ()

{

// initialization

...

pidp = proxy_attach();

Send(...); // send pidp to space

for (;;) {

pid = Receive(0,NULL,0);

if (pid == pidp) {

// sense

Send(...);

Send(...);

Send(...); ...

// select

...

// act

Send(...);

Send(...);

Send(...); ...

}

}

}

driven by trigger

Space
main ()

{

struct server_msg msg;

struct trigger *trg;

struct block *data;

// inicialization

for (;;) {

pid = Receive(0,&msg,sizeof(msg));

if (msg.header != SERVER_HEADER)

continue;

switch (msg.action) {

case READ:

// process *port and msg

break;

case WRITE:

...

break;

...

case ATTACH_TRIGGER:

...

break;

}

Reply(pid,&msg,sizeof(msg));

}

}

agent agent agent

space

device

agent

device

agent

space

agent

agent

user user

Agent-Space

Client-server (for comparison)

driver
probe

average

display sender

sender

receiver

receiver

average2

display

line

line

Code Structure

• Space contains only communication code

• Agents contains only application code

Deadlock

• Space calls only Receive and Reply

• Agent calls only Send and may be also

Receive but just on proxy

• There is no other kind of process

• Thus deadlock is not possible

• live lock – every process calls Receive, thus it regularly

yields processor

Live Lock

10,11,12,13,14

slow

fast 10,11,12,13,14

10, 12, 14

• swift response is supported by nature of information in

Agent-Space architecture where the information is

automatically sampled if there is lack time to process it

• (this is significant difference in comparison with actors)

Lagged response

Relation MAS and IPC

• MAS is one of possible solution of

communication problems of IPC (deadlock,

livelock and lagged response)

• It is not traditional but interesting and well-

working solution

How to use SRR:

• Install proper module into Linux kernel

http://developers.cogentrts.com/srr

• or install virtual machine called NC of

QNX6 into MS Windows www.qnx.com

and employ so called migration toolkit

Soft crash landing

• Architectures based on IPC often monitors state of

processes, let them to report their operation

(watchdog) and initialize a remedy operation

(recovery) as restart of the process, restart of the

computer or warning of user

• This is based on assumption that we are not able to

develop system without error but can manage that

the errors cause only tentative troubles.

Soft crash landing

• Agent based solution is a good choice for SCL,

because of elimination of direct relations among

processes

• Namely if agents are purely reactive, the system

automatically return to normal operation after

recovery from and error

agent

A

B A/B

ID

Pure reactivity

Id = 0;

for (;;) {

ask(A); ask(B);

C = A / B;
Id++;

tell(C); tell(Id);

}

for (;;) {

Id = 0; ask(Id);
ask(A); ask(B);

C = A / B;
Id++;

tell(C); tell(Id);

}

	Snímka 1
	Snímka 2
	Snímka 3: Inter Process Communication
	Snímka 4: Signals
	Snímka 5: Shared memory
	Snímka 6: Shared Memory - Synchronization
	Snímka 7: Synchronization among processes
	Snímka 8: Synchronization among processes
	Snímka 9: Message passing
	Snímka 10
	Snímka 11
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18: Primitives
	Snímka 19
	Snímka 20
	Snímka 21
	Snímka 22
	Snímka 23: Solution
	Snímka 24: Client-Server
	Snímka 25
	Snímka 26: Pyramidal architecture Client-Server
	Snímka 27
	Snímka 28
	Snímka 29
	Snímka 30: Server Decomposition
	Snímka 31
	Snímka 32: Slave
	Snímka 33: Master
	Snímka 34
	Snímka 35: Ferryman
	Snímka 36
	Snímka 37: Servers on the same level
	Snímka 38
	Snímka 39
	Snímka 40
	Snímka 41
	Snímka 42: Agent-Space
	Snímka 43: Agent
	Snímka 44
	Snímka 45: Space
	Snímka 46
	Snímka 47: Client-server (for comparison)
	Snímka 48: Code Structure
	Snímka 49: Deadlock
	Snímka 50
	Snímka 51
	Snímka 52: Relation MAS and IPC
	Snímka 53: How to use SRR:
	Snímka 54: Soft crash landing
	Snímka 55: Soft crash landing
	Snímka 56: Pure reactivity

