
Multi-agent systems

Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

http://www.agentspace.org/mas



MAS in VM



Virtual machine

Software framework which:

• overrides differences in operating system and 
hardware

• enables to run program compiled to so called 
bytecode, i.e. which does not call native 
operations of processor but provides appropriate 
interpretation

• provides to these programs multi-process, multi-
thread or multi-object environment

• implements basic set of functions, so called 
primitives



Processes, threads and objects

• Process is launched program which has own 

code, PC (program counter) and data

• Thread is launched program which has own 

code and PC but shares data with other 

threads

• object is „launched“ program which has 

own data and code but no PC



Process creation

data code

PC

data code

data code

PC

fork

PC

data code

PC

exec

fo
rk

 +
 ex

ec 

sp
aw

n
 



Thread creation

data code

PC

data code

PC

thread

data code

PC



Object creation

data code

PC

data

PC

new
code



OOP

• VM have been designed for OOP (see

Smalltalk)

• We transfer real world entities into virtual 

world in computer by description of objects

• Relations among these objects are specified 

by message passing

object.message(arguments)



Models of computation for OOP

• Standard model – class-instance model

• object is created as instance of certain class

• there is inheritance among classes

• message passing is synchronous (blocked 

until we get response)

• message passing is equivalent to calling of 

method with particular arguments



Control in the standard model

• Control is given over by calling methods of other 
objects got back with returned value



Models of computation for OOP

• Non-standard – actor model

• object (aktor) is created as modified copy of 
another object

• there is delegation among objects

• message passing is asynchronous (no 
blocking)

• message passing is equivalent to parallel 
calling of methods with particular 
arguments



Control in actor model

• Control is not passed to, we have more PCs, which 
fairly alternate 



Implementation of actors in the 

standard model

• Actor model can be implemented in the 

standard model by establishing of 

MessageQueue 

• The only PC we have is used for pop of 

message from top of the queue and 

performing of the corresponding method 

which cause pushing further messages into 

the queue



Actors and agents

• Actor is similar to agent which employs just 

direct communication

• Actor has no means of indirect 

communication 

• (Unlike agent, actor is rather message-driven since 

its message is tied with call of corresponding 

method for its processing. Agent processes 

messages rather in a general handler.)



Actors and agents

• There are no other structures in the actor system 
than actors. 

• While agents just enrich system with various 
structures

• This hybrid nature of MAS enables programmer to 
select the most appropriate structures from case to 
case, what is more flexible



Implementation of MAS on VM

• Usually we employ standard model

• Limited operation in one-thread VM. It is difficult 

to combine quick and slow processes which would 

need to be interrupted by preemptive scheduling

• It is better to attach own thread to each agent. 

Then its course can be preemptively interrupted. 

• VM is more suitable for MAS real application 

lower latency of process scheduling it has



Implementation of MAS on VM

• Direct communication via MessageQueue 

(one global or one per each agent)

• Indirect communication via Space



JVM

• JVM is one of VM

• JVM provides multi-object environment

• JVM provides multi-thread environment

• JVM does not provides multi-process

environment



Threads

class Thread interface Runnable

final

class A extends Thread {

public A () {

start();

}

public void run () {

for (;;) { … };

}

}

class A implements Runnable {

public A () {

new Thread(this).start();

}

public void run () {

for (;;) { … };

}

}



Threads synchronization

• each object in JVM has so called monitor, which 
enables to synchronize threads which manipulate it

• Such manipulation locks the monitor and stops all 
other threads which would also try to manipulate 
the object.

• Critical area of the manipulation is defined as here:

synchronized (obj) { …

}



Threads synchronization

• When a thread aim to move its PC in a critical 

area, it block until it the monitor of the 

corresponding object is locked for the thread

• The PC is blocked if the monitor is locked for 

other thread

• The PC gets into the criticial area and the monitor 

is locked for the thread otherwise



Threads synchronization

• Synchronized methods

… method (…) {

synchronized (this) {

…

}

}

synchronized … method (…) {

…

}

• Synchronized objects – objects of adaptor pattern, which 

encapsulate certain objects by synchronization of each 

method.



Threads synchronization

• Thread, which PC is in a critical area can unlock 
monitor (and block itself) by calling wait()on 
the object corresponding to the area.

• In this case just another thread can unblock it by 
calling notify() or notifyAll() on  the 
same object

• while notify() unblock just random one of 
such blocked threads, notifyAll() unblock all 
of them



Threads synchronization

synchronized (obj) {

try {

obj.wait();

} catch (InterruptedException e) {

}

}

synchronized (obj) {

try {

obj.notify();

} catch (InterruptedException e) {

}

} 



Space - singleton

• Space is implemented as 
object of singleton pattern

• Its constructor is private

• Instead of constructor we 
call static method, e.g. 
getInstance(), which 
return the only instance of 
such class (this instance is 
stored in static private
attribute

public class Singleton {

static Singleton instance =

new Singleton();

private Singleton () {

...

}

public static 

Singleton getInstance() {

return instance;

}

}



Space – time validity, priority

Time validity:

• The write operation stores not just value but also 
time validity into space

• The read operation check if the stored value has not 
expired yet, if so, the value is ignored as it has never  
been written.

Priority:

• The write operation stores also priority into space

• The write operation has no effect if it has lower 
priority than the data written in past until their time 
validity is not expired.



Agent

• Object with associated thread

• Object enrich by a certain standard 

mechanism of data exchange with other 

agents

• Object, which methods are not dedicated to 

be called from outside, they are called just 

from the thread



Timers

• Timing in Java is based on overloaded method 

wait(), where the optional argument specifies 

timeout in miliseconds

• Employing this method Java implements object 

Timer which has one thread which is mostly blocked 

and wait for launching of timered tasks at the proper 

time

• These tasks must be derived from class TimeredTask 

and override  method public void run()



Triggers

• Agent can register for notification of some 

events

• Then agent sleeps by calling wait()

• The event appears

• Trigger call notify() and agent wakes up



Event propagation

• Agent modularity can be considered as 

ambition to remove specific interface at side 

of event listener



Event propagation – traditional

class Listener implements Event1Listener, 

Event2Listener, ..., EventNListener {

...  

obj1.addListener(this); ...

obj2.addListener(this); ...

objN.addListener(this);

...

... event1Performed(... arg1 ...) { ... };

... event2Performed(... arg2 ...) { ... };

...

... eventNPerformed(... argN ...) { ... };

}



Event propagation –“agent-based”

class Listener extends Agent {

...

for (;;) {

... event = getEvent(...); // Receive

switch (event.getType) {

case ... : event1Performed(...); break;

case ... : event2Performed(...); break;

...

case ... : eventNPerformed(...); break;

}

};

}



Event propagation

• In the traditional case, the event is processed in 

thread in which it has been generated

• In the agent-based case, the event is processed in 

thread associated with agent, the thread in which 

the event has been generated just unblock the 

agent thread. 

• i.e. each event listener has own thread for event 

processing. 

• Thus it need to implement just one interface which 

enables the unblocking


	Snímka 1: Multi-agent systems
	Snímka 2
	Snímka 3: Virtual machine
	Snímka 4: Processes, threads and objects
	Snímka 5: Process creation
	Snímka 6: Thread creation
	Snímka 7: Object creation
	Snímka 8: OOP
	Snímka 9: Models of computation for OOP
	Snímka 10: Control in the standard model
	Snímka 11: Models of computation for OOP
	Snímka 12: Control in actor model
	Snímka 13: Implementation of actors in the standard model
	Snímka 14: Actors and agents
	Snímka 15: Actors and agents
	Snímka 16: Implementation of MAS on VM
	Snímka 17: Implementation of MAS on VM
	Snímka 18: JVM
	Snímka 19: Threads
	Snímka 20: Threads synchronization
	Snímka 21: Threads synchronization
	Snímka 22: Threads synchronization
	Snímka 23: Threads synchronization
	Snímka 24: Threads synchronization
	Snímka 25: Space - singleton
	Snímka 26: Space – time validity, priority
	Snímka 27: Agent
	Snímka 28: Timers
	Snímka 29: Triggers
	Snímka 30: Event propagation
	Snímka 31: Event propagation – traditional
	Snímka 32: Event propagation –“agent-based”
	Snímka 33: Event propagation

