
Multi-agent systems

Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

http://www.agentspace.org/mas



Multi-agent 

approach to 

control



Control

SystemI(t)

I(t-1)

I(t-2)

I(t-3)

I(t+3)

I(t+2)

I(t+1)

O(t)

O(t-1)

O(t-2)

O(t-3)

O(t+3)

O(t+2)

O(t+1)

ti
m

e



Subsumption architecture

• architecture of autonomous system, typically 

mobile robot

• it mimics simplified biological evolution in such a 

way that newer versions of control subsume whole 

older versions

• individual steps of evolution are performed by 

incremental job of developer

• it comes from principles of Cambrian or “new” 

artificial intelligence



Biological motivation

layer 1

layer 2

layer 3

layer N

…
…

…



Cambrian intelligence

(“Embodied intelligence”)

Fundamental postulates:

• Situatedness

• Embodiment 

• Emergence

• Interaction

• Hierarchy (Incrementality)



Situatedness

• Control is designed for particular set of situations in 
which can appear

• Typically simpler situations are subsets of more 
complicated. Thus we can prepare solution for the 
simpler ones and then refine it to the more 
complicated ones.

• Specific situations are dedicated to be solved by 
specific sets of modules – once one trick works, 
another one in the other time. 

• We do not aim to build universal representation of all 
the situations. „the world itself is its own best model“.



Embodiment

• Control is designed for concreate body

• We do not split design from implementation 

• We do design with prototype in hand

• Thus we can test and volume each phase of 

development

• We work with real input and we can not 

only handle but even employ their real 

character



Emergence

• System behavior is a result of mutual interaction 
among its modules

• Relation between behavior of modules and behavior 
of system is not doomed to be clear

• When we implement some system faculties by proper 
specification of modules behavior, it can happen that 
we have implemented a faculty which has not been 
concerned by us. Even it can be difficult to predict 
that such behavior appears. It is much easier to 
explain why it has appeared a posteriori



Interaction

• System can raise its intelligence from dynamics of 
its environment. It is often possible to replace a 
complicated control structure by a simple one which 
properly employs environment dynamics

• Unlike traditional systems which contains cognition 
as a module, here system exhibit more intelligent 
environment in dynamical environment than in static 
one

• Intelligence is a global feature of system and we are 
not able to find an inner module which would 
correspond to it.

• System reactivity support it robustness to outer 
influences and transient states in its environment



Hierarchy (Incrementality)

• We develop system in an incremental way, layer 
by layer. Each layer implements a particular 
activity or in other words it solves a particular 
situation

• We use bottom-up development. We start with 
hierarchically lower (resp. evolutionary older) 
layers, i.e. with more primitive activities or more 
simple situations.

• Gradually we add novel layers. After adding each 
layer we test and volume until the corresponding 
situation is satisfactory solved



Hierarchy (Incrementality)

• Thanks to incremental development we cannot fail 
in integration of individual components into 
system. On the other hand there is a danger that 
we fail to improve system to upper level and we 
will not be able to add the next activity keeping 
the already implemented activities in operation

• Hierarchy resides in ability of the newer layers to 
employ the older ones. The newer layers can 
monitor the older ones or even they can influence 
their operation



Incrementally, bottom-up

SYSTEM

time

Situation 1

Situation 2

Situation n

STAGE 1 STAGE 1

STAGE 2

STAGE 1

STAGE 2

STAGE n

OK OK

OK OK

OK

OK

0 Increment 1 Increment 2 Increment n

…
…

…

Result



Subsumption

• How a newer layer can influence the older 

one ?

• Problem: developing the older layer we 

have not considered any interface which 

could be called later from layers 

implemented in future…



Subsumption

• Solution: system must be modular and the 

modularity should implicitly allow such 

influences (and should have interface for 

that)



Subsumption architecture

• System is compounded from autonomous modules 

(Augmented Finite State Automata)

• Those modules are interconnected by 

communication lines which can transfer messages

Modul 2Modul 1

Modul 3



Subsumption architecture

• The newer layer can manipulate the older 

one via

- monitoring

- suppression

- inhibition

S

I



Modul 2Modul 1

Modul 4

Modul 3

I S

Subsumption architecture

• When we add a new layer, we can employ 

these mechanisms:



Decomposition

• by function = layers contain codes 
providing similar function (e.g. vision)

• by activity = layers contain codes 
providing similar activities (e.g. obstacles 
avoiding)

Subsumption architecture is based on 
decomposition by activity



Input from sensors

World modeling

Planning

Plan execution

Output to actuators

O
b

s
ta

c
le

s
 a

v
o

id
in

g

W
a

n
d

e
ri
n

g

E
x
p

lo
ri
n

g

C
o

g
n

it
iv

e
 m

a
p

 b
u

ild
in

g

By function

Horizontal

By activity

vertical



Example: 
• For example, navigation of two wheeled robot in bureau can be 

developed by subsumption in the following way: We start with 
robot which just goes forward. Then we add a layer which 
recognizes obstacles and while they are detected, the layer 
replaces messages for one wheel to backward. As a result, the 
robot does not collide, but easily it can happen that it stays in the 
same region, moving in a cycle. Thus we add a layer which 
sometimes causes its random turn. However we perform such a 
turn only when no obstacles are detected and we implement it just 
by apparent detection of obstacles. Further we add another layer 
which provides an active search for suitable absolute directions 
for movement to another part of bureau. Once such direction is 
chosen, we implement its following by turns which are apparently 
random for the older layers, but in fact they keep the robot at the 
chosen trajectory. Other level can detects landmarks and having 
received a goal from user it can navigate to one of them by 
emulation of the chosen direction in the older level



Sonar

Collide

Feel force Runaway

Forward

Turn StatusS

Avoid

AVOID

WANDER

Wander

Look Pathplan

IntegrateStereo

Whenlook

I S

EXPLORE

map

force

halt

busy

heading

encoders

heading

travel

busy

candidate init

startlook

heading

path

integral

COGNITIVE MAP



Implementation by Agent - Space

• Control designed 

by Subsumption 

architecture can 

be directly 

expressed as 

MAS (Agent –

Space 

architecture)

readwrite

read
monitoring

suppression

S readwrite(prio)

write(prio+1)

inhibition

I

read(default)

write(prio)

delete(prio+1)



Monitoring

• The newer layer reads data which 

implements data flow in the older layer

READWRITE

READ



Suppression

• The newer layer overwrites data which 

implements data flow in the older layer

READWRITE

WRITE 

(+FREEZE)

• Time validity

• Value priority



Inhibition

• The newer layer deletes data which 

implements data flow in the older layer

READWRITE

DELETE 

(higher priority)



Control system of mobile robot

Task: find a ball in bureau environment



Sensors and actuators

Sonars measure 

distance to the closest 

obstacle

Wheels for movement 

forward, backward 

and rotation at the 

spot

Ball detector



System design

AVOID – Avoid obstacles

WANDER - Wander

EXPLORE – Explore rooms

STOP – Stop at the ball

via subsumption architecture



AVOID

forward

Usually forward tells: go ahead 



sonar

forward

map

sonar

Sonar measures field of distances 

to the closest obstacle in various 

directions

AVOID



sonar

forward

map

sonar

collide

When there is danger of collision,

collide stops forward. 

Thus the robot goes straight 

forward until it meets obstacle and 

stops.

AVOID



sonar

forward

map

sonar

collide

Feelforce evaluates direction in 

which there is the most probable 

danger of collision

AVOID

force

feelforce



sonar

forward

map

sonar

collide

Runaway orders to move in the 

opposite direction

AVOID

force

heading

runaway

feelforce



sonar

forward

map

sonar

collide Finally turn transform the direction 

to wheel rotation

AVOID

force

heading

turn

runaway

turn

feelforce



sonar

forward

map

sonar

collide

Let us concern that rotation of 

robot provides feed back to sonar 

measurement what has impact to 

heading of robot. More the robot 

rotates from colliding direction, 

less rotation is ordered in heading. 

AVOID

force

heading

turn

runaway

turn

feelforce



sonar

forward

map

sonar

collide

Thus the robot goes ahead until it 

meets obstacle. The it starts to 

rotate until no collision is 

threatened. Than it goes straight 

again. 

In this way the robot easily gets 

into a cyclic trajectory, but it 

acceptable for this stage of 

development.

AVOID is finished.

AVOID

force

heading

turn

runaway

turn

feelforce



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

We can observe now that by 

implementation of static obstacles 

avoiding we have implemented also 

avoiding to slowly moving objects 

colliding with the robot. 

It is a very trivial case of 

emergence



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

Now we would like to 

solve the cyclic 

trajectory of robot

We simply sometimes 

turn robot by random 

rotation angle.

So from time to time 

wander generates such 

proposal



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

And agent avoid checks 

if there is no acute 

obstacle avoiding and if 

no, it writes the proposed 

angle into heading as if 

the angle would the right 

angle for obstacle 

avoiding.

Thus mechanism of 

obstacle avoiding serves 

also for random rotation 

of robot



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

In this way robot not 

only avoid obstacles but 

also it trajectory is not 

predictable and it wander 

through room.

But so far it keeps in one 

room, rarely going out 

through door. 



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

EXPLORE

startlook

whenlook

whenlook evaluates that the 

robot stays in one room for a 

long time. Then it invokes 

process of movement to other 

room



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

EXPLORE

candidate

startlook

stereo

whenlook

stereo

looks to 

field of 

distances 

from 

sonar to 

find a 

direction 

to a free 

area



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

EXPLORE

path candidate

startlook

stereo

whenlook

path

Path

remembers 

the 

direction to 

the area



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

EXPLORE

path

integral

candidate

startlook

stereo

whenlook

path

integrate

However 

it is 

direction 

relative to 

robot this 

integral 

helps to 

calculate 

its 

absolute 

value 

which 

will not 

change 

when 

robot 

rotates



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

EXPLORE

path

integral

candidate

startlook

stereo

whenlook

path

integrate

pathplan

Pathplan

aim to 

turn robot 

to the 

absolute 

rotation 

for going 

to the free 

area



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

EXPLORE

path

integral

pathplan

candidate

startlook

stereo

whenlook

path

integrate

This control 

is rather 

enough for 

probable 

visit of each 

room



sonar

forward

map

sonar

collide

AVOID

force

heading

turn

runaway

turn

feelforce

WAN

DER

wander

wander

avoid

EXPLORE

path

integral

pathplan

candidate

startlook

stereo

whenlook

path

integrate

STOP

block

bullet

When the 

robot meets 

ball block

stops it e.g. 

by putting 

phantom 

obstacles to 

all 

directions


	Snímka 1: Multi-agent systems
	Snímka 2: Multi-agent approach to control
	Snímka 3: Control
	Snímka 4: Subsumption architecture
	Snímka 5: Biological motivation
	Snímka 6: Cambrian intelligence (“Embodied intelligence”)
	Snímka 7: Situatedness
	Snímka 8: Embodiment
	Snímka 9: Emergence
	Snímka 10: Interaction
	Snímka 11: Hierarchy (Incrementality)
	Snímka 12: Hierarchy (Incrementality)
	Snímka 13
	Snímka 14: Subsumption
	Snímka 15: Subsumption
	Snímka 16: Subsumption architecture
	Snímka 17
	Snímka 18
	Snímka 19
	Snímka 20
	Snímka 21: Example: 
	Snímka 22
	Snímka 23: Implementation by Agent - Space
	Snímka 24: Monitoring
	Snímka 25: Suppression
	Snímka 26: Inhibition
	Snímka 27: Control system of mobile robot
	Snímka 28: Sensors and actuators
	Snímka 29: System design
	Snímka 30: AVOID
	Snímka 31: AVOID
	Snímka 32
	Snímka 33
	Snímka 34
	Snímka 35
	Snímka 36
	Snímka 37
	Snímka 38
	Snímka 39
	Snímka 40
	Snímka 41
	Snímka 42
	Snímka 43
	Snímka 44
	Snímka 45
	Snímka 46
	Snímka 47
	Snímka 48

