Multiagentove systemy

Andrej Lucny
KAI FMFI UK
lucny@fmph.uniba.sk

http://www.agentspace.org/mas

Real-time operation

» If something Is to happen, it must happen
within a certain time (latency)

« System speed must not be determined by
the slowest modules: which is fast, it is fast,
what 1s slow, 1t 1s slow

 (Brain is fast, neurons slow)

Body as a computational device

@)

Let us concern following objects on image

@) @) 0) @

> > >

* Instead of single calculation of non-linear
function (what Is difficult), we iterativelly
calculate its linear approximation (what Is easy)

» Just for nice math: we In fact employ Taylor’s
theorem

(Taylor’s theorem)

f(x):po+p1(x—:co)+p2(:z7—x0)2+---+pn(x—:c0)”+...

f(zo) = po f(l)(fﬁ) =1+ 2pa(x —20) + -+ npp(z —z)" 4.

X f(n)
D, = £ (o) f(x) = Z / n(!m()) (x — xo)"
n=>0

n!

If x — a0 I1ssmall: f(.cc) — f(xo) + f’(xo)(x — xo)
ft+1 1= [t + ViAz

4

interpolator letf/right

A

pos.

o
o
\

turn

letf/right

position direction

subsumption
architecture

pyramidal
client-server

Society of mind

architecture

ball server
Image server

recognlzer

architecture
agent-space

baII
” direction

Ieft/rlght

I
[/ interpolated

1

1

ball
! AN
interpolator <>/'

left/right

Agent-Space

» Multi-agent architecture designed at FMFI
UK 1997-2004

« It express ideas of Brooks and Minsky ba
language of MAS (with indirect
communication)

! — I Jozef

\ > Kelemen

__

MAS: Coordination

Reactive | | programming

agents LINDA |
. R. Brooks:
. Subsumption ,[_____)])
- architecture | ¥ Architecture \| Modelling of
____________________ | A tS / biological
[TTTTmTmTmemooees : ~ systems
. M. Minsky: & A gen pace d
' Societyof | .
' . :.____I,/ \7
: mind L
A : Software means for y\ ' dustrial
S ; Agent-oriented / agpﬁ;ﬁgn
' Real-time :___% -

Systems iL _____ programming

. p. client-server :

Motivation: development of
biomimetic control systems

Agent-Space Is a kind of MAS implementation on
VM

It serves for control, e.g. of mobile robots

It mimics modularity od distributed hardware in
software by multi-agent modularity

In software of course we can organize modules
even In better way than we could organize
distributed hardware modules

Traditional control

* modules have fixed number of inputs,
outputs and parameters

* one output is linked to several inputs

« transformation of inputs to outputs Is
performed by a scheduler and it Is often
uninterruptible

N
[

——1=| Modull
Modul2 F——

[

_| | -
Paraml = vall — g

An example of alternative
approach

et us concern a
simple example:

A mobile robot
following a ping-
pong ball

Motivation example

« [nitial solution can be based on a single pipeline

camera

» bw

» Sobel

| thre

shold

| Filter

- izol.

| Filter

- thin

| Filter

- prune

» edges

| Hough

- circle

» logic

» motors

Motivation example

« Gradually we
concern more a
more wide
operational
conditions

e and observe where
the traditional
approach falls into
troubles

Motivation example

What condition can be considered:

 Different illumination of scene

« More balls in the scene

 Following of occluded ball

 Active search for ball which is not shoot to image

Troubles of the traditional
approach

Combination of fast and slow modules

Different frequencies of individual inputs to
module

Dynamic change of outputs from module
Limited time validity of some data
Non priority based coordination

Alternative architecture

« Connections among modules will be replaced by
named data on a blackboard (space), so called
blocks, providing indirect communication among
the agents

— Agents can read, write and delete the blocks

— Agents can define time validity and priority of
Its write operation

Alternative architecture

» Modules will be replaced by agents

— We replace global scheduler of modules by
own control of agents

— Module calculation will be put to loop blocked
by proper timers and triggers and it will run in
own thread

— Inputs and output to the module will turn to
read and write operation over space

Alternative architecture

We have to pay attention to some implementation

details, namely:

It Is not wished to create blocks by calling a create
operation over space; It is much better to let the
block to be create by the first write operation

Blocks can be empty

It Is better to write nothing and let the original
value disappear due to limited time validity than
to write ‘bad value’

Mass read and write operation are important,
based on mask (wildcard or regex)

Implicit sampling

Since write operation overwrites data stored in a
block regardless their consumers have undertaken
them or not, any data flow is inherently
(potentially) sampled.

fast agent

IS

) f0(10), fo(11), fA(12), fA(13), f,(14)

slow agent\A

10,11,12,13,14

f5(10), fo(12) fo(14)

Data flow many:many

traditional alternative

<< JF

producer

consumer producer consumer

package com.microstepmis.agentspace.demo; COd e exam p I e

Import com.microstepmis.agentspace.*;

public class Agentl extends Agent { public class Agent2 extends Agent {
inti=0; inti;
public void init(String[] args) { public void init(String args|]) {
attachTimer(1000); attachTrigger(*'a™);
} }
public void senseSelectAct() { public void senseSelectAct() {
System.out.printin(*'write: ""+i); I = (Integer) read(''a",-1);
write(*'a",i++); System.out.printin(*'read "'+i);
} }
} }

public class Starter {
public static void main(String[] args) {
new SchdProcess(*'space’’,"'com.microstepmis.agentspace.SpaceFactory'',new String[]{"'DATA"});
new SchdProcess(*'agentl","'com.microstepmis.agentspace.demo.Agentl™,new String[]{});
new SchdProcess('agent2","'com.microstepmis.agentspace.demo.Agent2"’, new String[]{});

}
}

Comparison

Different distribution of timer frequencies

camera

bw

Sobel

thre
shold

Filter

- izol.

Filter

Filter

- thin

- prune

edges

Hough
- circle

logic

motors

Comparison

Combination of fast and slow modules

thre Filter Filter Filter Hough
—> —> . — A —> edges —» . —>
shold - izol. - thin - prune - circle
1 .
— Sobel — logic —
Detektor
80
Detektor
65—»
sor
Detektor
95 —»
i Detektor
Variance

Comparison

Dynamic change of inputs and outputs to modules

Detektor

Detektor

Detektor

Detektor

merge

circle-al
circle-a2

circle-a3
circle-a4
Detector a Q/

detach

circle-bl
circle-b2

follower|

A 4

Logic

circle-b3
circle-b4

Detector b O/v

circle-cl
circle-c2
circle-c3
circle-c4

Detector ¢ O/'

Follower

Logic

Pure reactivity

Comparison

and limited time validity

follower

» logic

WA

Logic
Follower

Interpolator Q

.| follower

logic

1<
sor [

| inter
polator

follower

Comparison

Non-trivial coordination among layers based changing priority

— logic » if-not
cond
bump expolore

A\ 4

\4

Sor

motor

Bump

p
Logic
Motor

p-1

p+1

Explorer

Advantages

» The selected problems of traditional
architecture can be solved easily

 Yet another advantages ?

« Some ideas for improvement of control
programming ?

Subsumption

layer N

Agent-Space Is
able to implement
Brooks’

layer 3

subsumption

layer 2

layer 1

Operation In real time

« Agent-Space supports real-time operation

 Real-time Is important for cognitive
processes

P72 P72 P72 72

../../moje/2009-hamburg/3-ver1-follow.avi
../../moje/2009-hamburg/5-ver1-stop.avi
../../moje/2009-hamburg/4-ver2-follow.avi
../../moje/2009-hamburg/6-ver2-stop.avi
https://youtu.be/NTrJfW939S0
https://youtu.be/DwjnkU4Hdf0
https://youtu.be/GzHnRXik41c
https://youtu.be/KWK7PpfglNw

Combining strong and weak
agents

 MAS modularity enables incorporation of
GOFAI methods into system in a
comfortable way

 E.g. top hierarchical layers will be
Implemented with strong agents; as a result
we employ GOFAI only where it Is more
suitable than stimulus-response modules

MAS and programming
languages

 Potential to extend language by
communication means among agents

 E.g. agent-space would extend assignment:
var = val, var = val for 1s at priority 0.5;

« E.g. code can be invoked by assignment
obj.met(arg); obj.attr = val; delay(1s);

So far, no adaptation

So far, we have dealt with systems which
can do someting intelligent, but their
capabilities do not improve through time

That Is a feature of the so called Cambrian
Inteligence

How could we provide adaptation?
(to be continued ...)

	Snímka 1: Multiagentové systémy
	Snímka 2
	Snímka 3
	Snímka 4
	Snímka 5
	Snímka 6: Agent-Space
	Snímka 7
	Snímka 8: Motivation: development of biomimetic control systems
	Snímka 9: Traditional control
	Snímka 10: An example of alternative approach
	Snímka 11: Motivation example
	Snímka 12: Motivation example
	Snímka 13: Motivation example
	Snímka 14: Troubles of the traditional approach
	Snímka 15: Alternative architecture
	Snímka 16: Alternative architecture
	Snímka 17: Alternative architecture
	Snímka 18: Implicit sampling
	Snímka 19: Data flow many:many
	Snímka 20
	Snímka 21: Comparison
	Snímka 22: Comparison
	Snímka 23: Comparison
	Snímka 24: Comparison
	Snímka 25: Comparison
	Snímka 26: Advantages
	Snímka 27: Subsumption
	Snímka 28: Operation in real time
	Snímka 29: Combining strong and weak agents
	Snímka 30: MAS and programming languages
	Snímka 31: So far, no adaptation

