
Multiagentové systémy

Andrej Lúčny

KAI FMFI UK

lucny@fmph.uniba.sk

http://www.agentspace.org/mas

Real-time operation

• If something is to happen, it must happen

within a certain time (latency)

• System speed must not be determined by

the slowest modules: which is fast, it is fast,

what is slow, it is slow

• (Brain is fast, neurons slow)

Body as a computational device

• Instead of single calculation of non-linear

function (what is difficult), we iterativelly

calculate its linear approximation (what is easy)

• Just for nice math: we in fact employ Taylor’s

theorem

Let us concern following objects on image

(Taylor’s theorem)

If is small:

subsumption

architecture

Society of mind

image server

ball server

Interpolated ball server

left/right server

left/right server

turning server

pyramidal

client-server

architecture

architecture

agent-space

image direction

ball

interpolated

ball

recognizer

interpolator left/right

left/right

ball

interpolator

letf/right turnS
position direction

letf/right
pos.

image

ball
left/right

Turn

left/right
interpolator

Agent-Space

• Multi-agent architecture designed at FMFI

UK 1997-2004

• It express ideas of Brooks and Minsky ba

language of MAS (with indirect

communication)

Jozef

Kelemen

R. Brooks:

Subsumption

architecture

M. Minsky:

Society of

mind

MAS:

Reactive

agents

Architecture

Agent-Space

Software means for

Agent-oriented

programming

Coordination

programming

LINDA

Real-time

systems

p. client-server

Modelling of

biological

systems

Industrial

application

Motivation: development of

biomimetic control systems

• Agent-Space is a kind of MAS implementation on

VM

• It serves for control, e.g. of mobile robots

• It mimics modularity od distributed hardware in

software by multi-agent modularity

• In software of course we can organize modules

even in better way than we could organize

distributed hardware modules

Traditional control

• modules have fixed number of inputs,
outputs and parameters

• one output is linked to several inputs

• transformation of inputs to outputs is
performed by a scheduler and it is often
uninterruptible

Modul1

Param1 = val1

Modul2

An example of alternative

approach

• Let us concern a

simple example:

A mobile robot

following a ping-

pong ball

• Initial solution can be based on a single pipeline

camera bw
thre

shold

Filter

- izol.

Filter

- thin

Filter

- prune
edges

Hough

- circle
logic motorsSobel

Motivation example

Motivation example

• Gradually we

concern more a

more wide

operational

conditions

• and observe where

the traditional

approach falls into

troubles

Motivation example

What condition can be considered:

• Different illumination of scene

• More balls in the scene

• Following of occluded ball

• Active search for ball which is not shoot to image

Troubles of the traditional

approach

• Combination of fast and slow modules

• Different frequencies of individual inputs to

module

• Dynamic change of outputs from module

• Limited time validity of some data

• Non priority based coordination

Alternative architecture

• Connections among modules will be replaced by

named data on a blackboard (space), so called

blocks, providing indirect communication among

the agents

– Agents can read, write and delete the blocks

– Agents can define time validity and priority of

its write operation

Alternative architecture

• Modules will be replaced by agents

– We replace global scheduler of modules by
own control of agents

– Module calculation will be put to loop blocked
by proper timers and triggers and it will run in
own thread

– Inputs and output to the module will turn to
read and write operation over space

Alternative architecture

We have to pay attention to some implementation
details, namely:

• It is not wished to create blocks by calling a create
operation over space; it is much better to let the
block to be create by the first write operation

• Blocks can be empty

• It is better to write nothing and let the original
value disappear due to limited time validity than
to write ‘bad value’

• Mass read and write operation are important,
based on mask (wildcard or regex)

Implicit sampling

• Since write operation overwrites data stored in a

block regardless their consumers have undertaken

them or not, any data flow is inherently

(potentially) sampled.

10,11,12,13,14

fast agent

fA(10), fA(11), fA(12), fA(13), fA(14)

fB(10), fB(12), fB(14)

A

B

C slow agent

Data flow many:many

producer

consumer producer consumer

traditional alternative

public class Agent2 extends Agent {

int i;

public void init(String args[]) {

attachTrigger("a");

}

public void senseSelectAct() {

i = (Integer) read("a",-1);

System.out.println("read "+i);

}

}

package com.microstepmis.agentspace.demo;

import com.microstepmis.agentspace.*;

public class Agent1 extends Agent {

int i = 0;

public void init(String[] args) {

attachTimer(1000);

}

public void senseSelectAct() {

System.out.println("write: "+i);

write("a",i++);

}

}

public class Starter {

public static void main(String[] args) {

new SchdProcess("space","com.microstepmis.agentspace.SpaceFactory",new String[]{"DATA"});

new SchdProcess("agent1","com.microstepmis.agentspace.demo.Agent1",new String[]{});

new SchdProcess("agent2","com.microstepmis.agentspace.demo.Agent2", new String[]{});

}

}

Code example

Comparison
C

am
er

a

B
W

So
be

l

T
hr

es
ho

ld

F
il
te

r
-i

zo
l

E
gd

es

H
ou

gh
-

ci
rc

le

L
og

ic

M
ot

or

F
il
te

r
-t

hi
n

F
il
te

r
-p

ru
ne

camera bw
thre

shold

Filter

- izol.

Filter

- thin

Filter

- prune
edges

Hough

- circle
logic motorsSobel

Different distribution of timer frequencies

Comparison

logicSobel
Detektor

Threshold = 80

Detektor

Threshold = 65

Detektor

Threshold = 95

sor

thre

shold

Filter

- izol.

Filter

- thin

Filter

- prune
edges

Hough

- circle

1

C
am

er
a

B
W

So
be

l

T
hr

es
ho

ld

F
il
te

r
-i

zo
l

E
gd

es

H
ou

gh
-

ci
rc

le
L
og

ic

M
ot

or

F
il
te

r
-t

hi
n

F
il
te

r
-p

ru
ne

80

95

65

V
ar

ia
nc

e

Detectors

logicSobel
Detektor

Detektor

Detektor

sor

Detektor

80

65

95

1

Variance

Combination of fast and slow modules

Comparison

logic

Detektor

merge

Detektor

Detektor

Detektor

detach

Detector a

circle-a1
circle-a2

circle-a3
circle-a4

Detector b

circle-b1
circle-b2

circle-b3
circle-b4

Detector c

circle-c1
circle-c2

circle-c3
circle-c4

Logic

Follower

Dynamic change of inputs and outputs to modules

follower Logic

Comparison

logicfollower

logicfollower

sor
1

inter

polator

follower

Logic
Follower

Interpolator

Pure reactivity

and limited time validity

Comparison

logic

expolorebump

if-not

cond

motorsor

1

Explorer

Logic

Bump

Motor

p

p-1

p+1

Non-trivial coordination among layers based changing priority

Advantages

• The selected problems of traditional

architecture can be solved easily

• Yet another advantages ?

• Some ideas for improvement of control

programming ?

Subsumption

Agent-Space is

able to implement

Brooks’

subsumption

layer 1

layer 2

layer 3

layer N
…

…
…

Operation in real time

• Agent-Space supports real-time operation

• Real-time is important for cognitive

processes

https://youtu.be/NTrJfW939S0

https://youtu.be/DwjnkU4Hdf0

https://youtu.be/GzHnRXik41c

https://youtu.be/KWK7PpfglNw

../../moje/2009-hamburg/3-ver1-follow.avi
../../moje/2009-hamburg/5-ver1-stop.avi
../../moje/2009-hamburg/4-ver2-follow.avi
../../moje/2009-hamburg/6-ver2-stop.avi
https://youtu.be/NTrJfW939S0
https://youtu.be/DwjnkU4Hdf0
https://youtu.be/GzHnRXik41c
https://youtu.be/KWK7PpfglNw

Combining strong and weak

agents

• MAS modularity enables incorporation of
GOFAI methods into system in a
comfortable way

• E.g. top hierarchical layers will be
implemented with strong agents; as a result
we employ GOFAI only where it is more
suitable than stimulus-response modules

MAS and programming

languages

• Potential to extend language by

communication means among agents

• E.g. agent-space would extend assignment:

var = val; var = val for 1s at priority 0.5;

• E.g. code can be invoked by assignment

obj.met(arg); obj.attr = val; delay(1s);

So far, no adaptation

• So far, we have dealt with systems which

can do someting intelligent, but their

capabilities do not improve through time

• That is a feature of the so called Cambrian

inteligence

• How could we provide adaptation?

(to be continued ...)

	Snímka 1: Multiagentové systémy
	Snímka 2
	Snímka 3
	Snímka 4
	Snímka 5
	Snímka 6: Agent-Space
	Snímka 7
	Snímka 8: Motivation: development of biomimetic control systems
	Snímka 9: Traditional control
	Snímka 10: An example of alternative approach
	Snímka 11: Motivation example
	Snímka 12: Motivation example
	Snímka 13: Motivation example
	Snímka 14: Troubles of the traditional approach
	Snímka 15: Alternative architecture
	Snímka 16: Alternative architecture
	Snímka 17: Alternative architecture
	Snímka 18: Implicit sampling
	Snímka 19: Data flow many:many
	Snímka 20
	Snímka 21: Comparison
	Snímka 22: Comparison
	Snímka 23: Comparison
	Snímka 24: Comparison
	Snímka 25: Comparison
	Snímka 26: Advantages
	Snímka 27: Subsumption
	Snímka 28: Operation in real time
	Snímka 29: Combining strong and weak agents
	Snímka 30: MAS and programming languages
	Snímka 31: So far, no adaptation

