
research & development

JADE Semantics Add-on

tutorial
& practical exercises

Vincent Louis
Orange Labs

March 27-28th, 2008

JADE Semantics Add-on / March 27-28th, 2008 – p 2 research & development France Telecom Group

1preliminaries
• introduction
• the FIPA-ACL formal specifications
• handling FIPA-SL expressions

JADE Semantics Add-on / March 27-28th, 2008 – p 3 research & development France Telecom Group

what is the JSA?
 a JADE extension to automate the interpretation of the

meaning of messages exchanged by agents (according
to the semantics of the FIPA-ACL standard)

 a framework to build more flexible agents

 a set of classes, which makes simpler the coding of
JADE agents

 agents built on top of JSA = semantic agents

JADE Semantics Add-on / March 27-28th, 2008 – p 4 research & development France Telecom Group

the most simple semantic agent
 the class SemanticAgent provides a default implementation

for semantic agents
 it makes it possible to interpret all FIPA-ACL messages (but

proxy)

java jade.Boot mySemanticAgent:SemanticAgent

inform (age smith 15)

query-ref ((any ?x (age smith ?x)))

inform (age smith 15)

JADE Semantics Add-on / March 27-28th, 2008 – p 5 research & development France Telecom Group

FIPA-ACL: a language for
understanding each other
 logical formalization of the philosophical theory of speech

acts [Austin, Searle, Vandervecken, Sadek]
 “communication is action”

An utterance involves 3 levels
 locution: (physical) act of saying
 illocution: act performed by saying
 perlocution: act performed by the fact of saying

on the physical environment
on the mental states

of participants

propositional
content

performative

“I ask you to close the door”

JADE Semantics Add-on / March 27-28th, 2008 – p 6 research & development France Telecom Group

communicative acts
 syntax
(performative*

:sender sending agent*
:receiver receiving agents*
:content propositional content*

(action, proposition or IRE)
:content-language content language
:ontology content vocabulary

…other parameters…
)
 semantics: formal definition (in a logical framework) of

 FP : feasibility precondition
 RE : rational effect or perlocutionary effect

example
INFORM
(agent-identifier :name me)
(set ...)
"((sunny))"

fipa-sl
weather-forecast

JADE Semantics Add-on / March 27-28th, 2008 – p 7 research & development France Telecom Group

example: query-if
(query-if

:sender s
:receiver r
:content "((age smith 10))"

)
 precondition: s does not know the truth of (age smith 10)
 rational effect: r performs the action

(inform-if :sender r :receiver s :content "((age smith 10))")

 the JSA interpretation engine entails the reaction to a
message from its formal features

the agent s asks
the agent r

whether the proposition
(age smith 10) holds

JADE Semantics Add-on / March 27-28th, 2008 – p 8 research & development France Telecom Group

FIPA-ACL: about 20 performatives
 see http://www.fipa.org/specs/fipa00037

 information transmission
inform, inform-if, inform-ref, confirm, disconfirm

 request on information on actions
query-if, query-ref, subscribe, request, request-when(ever)

 negotiation
cfp, propose, accept-proposal, reject-proposal

 action management
cancel, agree, refuse

 task delegation
propagate, proxy

 error management
failure, not-understood

JADE Semantics Add-on / March 27-28th, 2008 – p 9 research & development France Telecom Group

FIPA-SL
 logical language, including

 a first order predicate logic (FOL)
 a modal logic, with modalities that represent

• agents' mental states: believes (B, U) and intentions (I)

• action occurrences: past (done) and future (feasible) ones

 prefixed syntax like in LISP: (and sunny cold)
 2 main types of expressions

 terms: represent domain objects
instances, actions, object descriptions (IRE), ...

 formulas: represent facts, which can be true or false

 see http://www.fipa.org/specs/fipa00008

JADE Semantics Add-on / March 27-28th, 2008 – p 10 research & development France Telecom Group

FIPA-SL terms (1/2)
 constants

numbers: 1, -6.5E1 strings: "this is a \"FIPA-SL\" string"
dates: YYYYMMDDTHHMMSSmmmz, 20060331T093000000z
binary constants: #N"byte-sequence

 sets and sequences
(set elem1 elem2 ...) duplicates and order are not significant
(sequence elem1 elem2 ...) duplicates and order are significant

 functional terms (e.g. class instances)
(funct-symbol :param_name param_value ...)
(person :name john :age 20)

JADE Semantics Add-on / March 27-28th, 2008 – p 11 research & development France Telecom Group

FIPA-SL terms (2/2)
 actions (including communicative acts)

(action actor act) act is usually given as a functional term
(action s (inform :sender s :content "((sunny))" :receiver (set r)))
 action composition

(; a1 a2) sequence: do a1, then do a2
(| a1 a2) indeterministic choice: do either a1 or a2

 identifying reference expressions (IRE)
(quant term formula) where quant ∈ {any, iota, some, all}
(iota ?x (age john ?x)) the only value related to john by age

(i.e. the age of john)
(any ?x (age ?x 20)) any value representing a 20 years old person
(all (sequence ?x ?y) (age ?x ?y)) exactly all pairs (person, age)
(some (sequence ?x ?y) (age ?x ?y)) any set of pairs (person, age)

JADE Semantics Add-on / March 27-28th, 2008 – p 12 research & development France Telecom Group

FIPA-SL formulas (1/2)
 atomic formulas

(pred-name param1 param2 ...) all paramN are terms
(age (person :name john :age 20) 20)
predefined predicates and constants: =, result, true, false

 FOL logical connectors
not (unary), and, or, implies, equiv (binaries)
(and sunny cold), (equiv (not cold) hot)
for convenience, or and and operators are n-ary operators in the JSA fw.
(and sunny cold winter) is read as (and sunny (and cold winter))

 FOL quantifiers
(exists var formula) there is at least one object var satisfying formula
(forall var formula) all objects var satisfy formula
(forall ?x (implies (person ?x) all persons

(exists ?y (age ?x ?y)))) have an age

JADE Semantics Add-on / March 27-28th, 2008 – p 13 research & development France Telecom Group

FIPA-SL formulas (2/2)
 mental state modalities

(modal-op agent formula) where agent is a term,
 modal-op ∈ {B, U, I}

(B (agent-identifier :name john) sunny)
(B (agent-identifier :name john) (not sunny))
(not (B (agent-identifier :name john) sunny))

 action occurrence modalities
(modal-op action formula) where action is a term of kind action,

 modal-op ∈ {done, feasible}
(done (| a1 a2) sunny) either a1 or a2 has just occurred,

and sunny was true just before
(feasible (action s (inform :receiver (set r) :content "(sunny)")) (B r sunny))

it is possible to perform the inform act, and if so,
r will believe its content just after its performance

3 different
kinds of
belief

JADE Semantics Add-on / March 27-28th, 2008 – p 14 research & development France Telecom Group

handling SL expressions with the JSA
 SL expressions are represented by Directed Acyclic Graphs

of Node objects (counterparts of JADE AbsXXX objects)

 (B mary (age john 20))

 see package
jade.semantics.lang.sl.grammar

 Some Node objects have specific computation methods
e.g. getSimplifiedFormula() on Formula instances

 The main class to handle Node objects is
jade.semantics.lang.sl.tools.SL

Belief

Predicate

Term
20

Term
john

Term
mary

Symbol
age

JADE Semantics Add-on / March 27-28th, 2008 – p 15 research & development France Telecom Group

parsing SL expressions
 methods to parse a string expressed in SL syntax

(into a Node object)
 term(String) create SL terms
 formula(String) create SL formulas
 content(String) create SL content expressions
 symbol(String) create SL (function or predicate) symbols
 string(String), word(String), create SL constants

date(String), bytes(byte[]), warning: do not use the constructors of
integer(String), real(String) Node subclasses to create constants

WordConstantNode firstname = SL.word("john");
Term john = SL.term("(agent-identifier :name " + firstname + ")");
Formula f = SL.formula("(age " + john + " 20)");

JADE Semantics Add-on / March 27-28th, 2008 – p 16 research & development France Telecom Group

unparsing SL expressions
 method toString()

 unparse a Node object into a string expressed in SL syntax

System.out.println("f = " + f);
System.out.println("agent = " +

((FunctionalTermParamNode)john).getParameter("name"));

prints f = (age (agent-identifier :name john) 20)
agent = john

JADE Semantics Add-on / March 27-28th, 2008 – p 17 research & development France Telecom Group

SL expression patterns
 the Node hierarchy extends FIPA-SL with “meta-references”

 it is possible to build “patterns” of expressions
 meta-references (MR) within a pattern are prefixed by “??”
 MR may be replaced with expressions of the proper type
 2 occurrences of the same MR denote the same expression
 example (I ??agent (B ??agent ??formula))

 2 fundamental operations on patterns
 instantiation replace each occurrence of a MR within a pattern

with the same expression
 matching check whether an expression may result from

the instantiation of a pattern

??agent may be
replaced with a term

??formula may be
replaced with a formula

(I john (B john sunny))

JADE Semantics Add-on / March 27-28th, 2008 – p 18 research & development France Telecom Group

creating and instantiating patterns
 creating patterns: SL.term, SL.formula, ...

 as for creating regular expressions

 instantiating patterns: aNode.instantiate(aString,anotherNode)
 or SL.instantiate(aNode, [aString, anotherNode]*)

very useful to create expressions

Formula pattern = SL.formula
("(I ??agent (B ??agent ??formula))");

Term john = SL.term("(agent-identifier :name john)");
Formula sun = SL.formula("sunny");

Formula f = (Formula)SL.instantiate(pattern,"agent", john, "formula", sun);

f is (I (agent-identifier :name john) (B (agent-identifier :name john) sunny))

JADE Semantics Add-on / March 27-28th, 2008 – p 19 research & development France Telecom Group

matching patterns (1/2)
 aNode.match(Node)

returns a MatchResult if a matching is possible
or null if no matching is possible

 aMatchResult.getXXX(String) and aMatchResult.XXX(String)
get the value of a given MR satisfying the matching

fundamental to recognize or filter expressions

MatchResult result = pattern.match(f);
if (result != null) {

System.out.println("agent = " + result.term("agent"));
System.out.println("formula = " + result.formula("formula"));

} else System.out.println("no match");

prints agent = (agent-identifier :name john)
formula = sunny

JADE Semantics Add-on / March 27-28th, 2008 – p 20 research & development France Telecom Group

matching patterns (2/2)
 matching rules mainly rely on syntactic matching

 ??metaRef matches any SL expression (with the proper type)
 (functor :p1 v1 :p2 v2)

matches any functional term with the same functor
and at least 2 parameters named p1 and p2,
whose values match v1 and v2

 (functor (::? :p1 v1) :p2 v2)
matching of parameter “p1” is optional

 (and f1 f2 ... fn) the matching is not sensitive to the order of
(or f1 f2 ... fn) subformulas

 examples
 (INFORM :sender ??a).match(INFORM :content "foo") → null
 (INFORM (::? :sender ??a)).match(INFORM :content "foo") → [] ??a is unbound
 (INFORM (::? :sender ??a)).match(INFORM :sender me :content "foo") → [??a = me]
 (and f ??phi h).match(and f g h i) → [??phi = (and g i)]

JADE Semantics Add-on / March 27-28th, 2008 – p 21 research & development France Telecom Group

practical exercises
developing an album application
 4 progressive exercises

 under the tutorials directory
 exercises/

• img*.jpg: predefined images for the album application
• src/album/tools: predefined GUI classes
• src/album/versionX/Album.java: album class to develop
• src/album/versionX/Viewer.java : viewer class to develop
within build.xml, set variable "tuto-home" to the tutorial directory
compile with ant X jar (X = 1, 2, 3 or 4)
run with ant X album
 ant X viewer
develop all yourself or start from the *.java.sqel templates

 solutions/
same structure, with completed *.java files

JADE Semantics Add-on / March 27-28th, 2008 – p 22 research & development France Telecom Group

album application – exercise 1
handling SL expressions
 register a picture within the album agent

 use the application-specific predicate (image-content id byte-content)
 read the byte content from the file given as an agent's argument
 use SemanticCapabilities.interpret(Formula)

within the setup() method of the agent

 get the picture (as a byte content) with a JADE dummy agent

query-ref ((any ?x (image-content img ?x)))

inform (image-content img #n"...) JADE
dummy
agentalbum

JADE Semantics Add-on / March 27-28th, 2008 – p 23 research & development France Telecom Group

album application – exercise 1
handling SL expressions
 make the request performed by the viewer agent

 read the name of the album agent from the agent's arguments
 use SemanticCapabilities.queryRef(IdentifyingExpression)

within the setup() method of the agent

 check the exchanged messages thanks to the JADE sniffer
 request the viewer with a dummy agent

query-ref ((any ?x (image-content img ?x)))

inform (image-content img #n"...)

album viewer

JADE
dummy
agent

JADE Semantics Add-on / March 27-28th, 2008 – p 24 research & development France Telecom Group

2JSA interpretation engine
• semantic agent functioning
• semantic agent software structure
• semantic interpretation principles (SIPs)

JADE Semantics Add-on / March 27-28th, 2008 – p 25 research & development France Telecom Group

JSA interpretation engine
SemanticCapabilities

message
receipt

activities

SL formula
interpretation

 interpretation
activity

set of SRs

SIPs

event
perception

1

consumption 2 production4

3
add

query
update

jade.core.behaviours.Behaviour

belief
base

semantic
actions

JADE Semantics Add-on / March 27-28th, 2008 – p 27 research & development France Telecom Group

interpretation algorithm
 event perception: produce an initial SR

 receipt of a message m → (B agent (done (action sender m)))
 interpretation of a formula → f

 while the list of SRs is not empty, do
 remove a SR from the list;
 if the SR is logically equivalent to false, then exit;
 apply all possible SIPs to the SR;
 add all produced SRs to the list;

 end while
 the interpretation finishes when

 the list of SRs is empty → “normal” case
 a SR equivalent to false is produced → sending of a not-understood
 no SIP is applicable → assertion of remaining SRs into the belief base

JADE Semantics Add-on / March 27-28th, 2008 – p 28 research & development France Telecom Group

example of interpretation (1/6)

message
receipt

 interpretation
activity

set of SRs

event
perception

1

consumption 2

belief
base

semantic
actions

m = (Query-If (sunny))

{(B myself (done m))}

SIPsAction
Feature

3
query
action

features

production4

{(B myself (done m))
(B myself (I other (Bif other sunny)))}

JADE Semantics Add-on / March 27-28th, 2008 – p 29 research & development France Telecom Group

example of interpretation (2/6)

message
receipt

 interpretation
activity

set of SRs

consumption 2

belief
base

semantic
actions

m = (Query-If (sunny))

{(B myself (done m))
(B myself (I other (Bif other sunny)))}

SIPsIntention
Transfer

production4

{(B myself (done m))
(I myself (Bif other sunny))}

JADE Semantics Add-on / March 27-28th, 2008 – p 30 research & development France Telecom Group

example of interpretation (3/6)

message
receipt

 interpretation
activity

set of SRs

consumption 2

belief
base

semantic
actions

m = (Query-If (sunny))

SIPsRational.
Principle

production4

{(B myself (done m))
(I other (Bif other sunny))}

3
query
action

features

{(B myself (done m))
(is_doing (Inform-If (sunny)))}

JADE Semantics Add-on / March 27-28th, 2008 – p 31 research & development France Telecom Group

example of interpretation (4/6)

message
receipt

 interpretation
activity

set of SRs

consumption 2

belief
base

semantic
actions

m = (Query-If (sunny))

SIPsPlan
Execution

production4

3

add
{(B myself (done m))

(is_doing (Inform-If (sunny)))}

Inform-If
(sunny)

JADE Semantics Add-on / March 27-28th, 2008 – p 32 research & development France Telecom Group

example of interpretation (5/6)

message
receipt

 interpretation
activity

set of SRs

consumption 2

belief
base

semantic
actions

m = (Query-If (sunny))

SIPsFinal
Assertion

production4

3
assert

{(B myself (done m))
(is_doing (Inform-If (sunny)))}

Inform-If
(sunny)

{}

JADE Semantics Add-on / March 27-28th, 2008 – p 33 research & development France Telecom Group

example of interpretation (6/6)

message
receipt

 interpretation
activity

set of SRs

belief
base

semantic
actions

m = (Query-If (sunny))

SIPs

Inform-If
(sunny)

SL formula
interpretation

event
perception

1

{(B myself (done
(Inform-If (sunny))))}

query

JADE Semantics Add-on / March 27-28th, 2008 – p 34 research & development France Telecom Group

software architecture

semantic
actions

belief
base

 SIPs

 interpretation
activity

JADE Semantics Add-on / March 27-28th, 2008 – p 35 research & development France Telecom Group

semantic agent skeleton
 semantic agent = JADE agent + SemanticCapabilities

this attribute specifies the interpretation engine functioning

public class MyJSA extends SemanticAgent {
 class MySematicCapabilities extends SemanticCapabilities {

protected SemanticInterpretationPrincipleTable
 setupSemanticInterpretationPrinciples() {...}

protected KBase setupKbase() {...}
protected SemanticActionTable setupSemanticAction() {...} ...

 }
 public MyJSA() {

setSemanticCapabilities(new MySematicCapabilities());
 }
 public void setup() {

super.setup(); ...
 }
}

JADE Semantics Add-on / March 27-28th, 2008 – p 36 research & development France Telecom Group

main SemanticCapabilities operations
 general operations

 getAgent()
returns the JADE agent instance wrapping the semantic agent

 getAgentName()
returns a SL term representing the semantic agent AID

 getSemanticInterpreterBehaviour()
returns the Behaviour running the semantic interpretation engine

 interpret(Formula/String/SR), interpretAfterPlan(ActionExpression,SRs)
runs the semantic interpretation engine on a given formula

 operations to perform communicative acts
 performative(propositional_content_params,...,receiver)

 example: inform(Formula,Term), request(ActionExpression,Term), ...

Term or Term[]Formula, ActionExpression or IdentifyingExpression

JADE Semantics Add-on / March 27-28th, 2008 – p 37 research & development France Telecom Group

SIPs in the heart of interpretation
 a “Semantic Representation” (SR)

 represents a part of the meaning of an event
 conveys a subjective meaning with respect to the agent

• of the form (B myself ??phi) or (B myself (I myself ??phi))

 a “Semantic Interpretation Principle” (SIP)
 elaborates a part of the meaning of an event by

• consuming a SR (the SIP is said to be applied to the SR)
• possibly modifying the agent's internal state
• possibly producing new SRs

 has an application index, which makes it possible to
• order the application of SIPs
• apply SIPs only to relevant SRs (such that SR index ≥ SIP index)

 the interpretation algorithm is an ad-hoc rule engine

SIPs

consumption 2 production4

3
add

query
update

JADE Semantics Add-on / March 27-28th, 2008 – p 38 research & development France Telecom Group

standard SIPs (1/2)
 standard SIPs implement the generic principles of the

rational agent theory, which FIPA relies on

 Action Feature (B myself (done ??action true))
upon perception of an action performance (including receipt of messages),

produces SRs representing the formal FP and RE of the perceived action
(uses the table of SemanticAction, which includes all FIPA acts)

 Belief Transfer (B myself (I ??agent (B myself ??belief)))
decides to adopt a belief suggested by another agent
(e.g. upon interpretation of an inform)

 Intention Transfer (B myself (I ??agent ??goal))
decides to adopt the intention of another agent's goal
(elementary form of cooperation, e.g. upon interpretation of a request)

JADE Semantics Add-on / March 27-28th, 2008 – p 39 research & development France Telecom Group

standard SIPs (2/2)
 Planning Adapter (I myself ??goal)

SIP to be overridden (see details), in order to plug external planers that
select a proper action plan to reach an intended goal
JSA is provided with 2 very basic generic planning SIPs

 Action Performance (I myself (done ??action true))
first generic planning SIP, which selects an intended action as a plan
(uses the table of SemanticAction)

 Rationality Principle (I myself ??goal)
second generic planning SIP, which selects an action whose rational
effect matches the intended goal as a plan
(uses the table of SemanticAction)

 Plan Execution (is_doing myself ??plan)
adds to the agent the proper activity (as a Jade behaviour) to perform
an action plan previously selected by a Planning SIP
(uses the table of SemanticAction)

JADE Semantics Add-on / March 27-28th, 2008 – p 40 research & development France Telecom Group

application-specific SIPs
 customize the semantic agents' behaviour with specific SIPs

3 main cases
 reactive production of an applicative “piece of meaning” (resulting from

the interpretation of SL formulas): e.g. production of an intention
 triggering of applicative “notifications”, e.g. to control a GUI
 specialization of standard SIPs (e.g. BeliefTransferSIPAdapter)

class MySematicCapabilities extends SemanticCapabilities {
 protected SemanticInterpretationPrincipleTable

 setupSemanticInterpretationPrinciples() {
table = super.setupSemanticInterpretationPinciples();
table.addSemanticInterpretationPrinciple(mySIP);
...
return table;

 } ...
}

JADE Semantics Add-on / March 27-28th, 2008 – p 41 research & development France Telecom Group

defining an application-specific SIP
 method apply

 consumes / produces SRs
 returns null if not applicable
 add activities with method

potentiallyAddBehaviour
 update the belief base with

potentiallyAssertFormula
(note: prefer producing SRs)

 method apply first matches
the input SR with a pattern

 the SIP application is then
specified in method doApply

 if not applicable, return null
 if no SR to produce,

return result

JADE Semantics Add-on / March 27-28th, 2008 – p 42 research & development France Telecom Group

album application – exercise 2
implementing an applicative SIP
 add a SIP to the viewer agent to display received pictures

 use the provided implementation of the ViewerGUI interface
 define the inner class ViewerSemanticCapabilities, instantiate it within

the viewer constructor
 overload the setupSemanticInterpretationPrinciples() method
 create an ApplicationSpecificSIPAdapter, which adds a

OneShotBehaviour that calls ViewerGUI.displayPhoto(byte[])

query-ref ((any ?x (image-content img ?x)))

inform (image-content img #n"...)

album viewer

JADE Semantics Add-on / March 27-28th, 2008 – p 43 research & development France Telecom Group

album application – exercise 2.bis
implementing a subscribe
 within the setup() method of the album agent

 add a TickerBehaviour, which periodically changes the image content
(the agent's arguments give the available pictures)

• 1st implementation: use retractFormula, then interpret
• 2nd implementation: use interpret on (= (iota ?x (image-content img ?x)) value)

 within the setup() method of the viewer agent
 send a subscribe message, identical to the previously sent query-ref

subscribe ((any ?x (image-content img ?x)))

inform (image-content img #n"aaa...)

album

query-ref ((any ?x (image-content img ?x)))

inform (image-content img #n"bbb...)
viewer

JADE Semantics Add-on / March 27-28th, 2008 – p 44 research & development France Telecom Group

3defining semantic agents' beliefs
• belief base generic specifications
• default filter-based implementation

JADE Semantics Add-on / March 27-28th, 2008 – p 45 research & development France Telecom Group

belief base (BB)
 representation of a semantic agent's internal state

 update of the internal state
 information retrieval on the internal state
 notification of changes on the internal state

 subjective internal state
 all stored facts are believed by the agent

(B myself (age john 20)), (I myself (B mary (age john 20)))
 any fact that is not stored is not believed

(not (B myself sunny)), (not (B myself (not sunny)))

 logically consistent internal state
 e.g., cannot store both (B myself cold) and (B myself (not cold))

 jade.semantics.kbase.KBase interface

query
update

belief
base

JADE Semantics Add-on / March 27-28th, 2008 – p 46 research & development France Telecom Group

updating beliefs
 assertFormula(Formula f)

consistently assert (B myself f)
 retractFormula(Formula f)

consistently assert (not (B myself f))
f may include meta-references

 such asserted formulas are not interpreted by the SIPs
use rather aSemanticCapabilities.interpret(Formula)

(B myself (age john 20))
(B myself sunny)

(B myself (age john 20))
(B myself sunny)
(B myself (age mary 19))

(B myself sunny)

assertFormula((age mary 19)) retractFormula((age ??x ??y))

JADE Semantics Add-on / March 27-28th, 2008 – p 47 research & development France Telecom Group

querying beliefs (1/2)
 query(Formula f): QueryResult, returns

 null if (B myself f) is false
 a list of MatchResult objects, which provides the values of the meta-

references such that (B myself f) is true
 queryRef(IdentifyingExpression ire): Term, returns

 null if no object o satisfies (B myself (= o ire))
 the object o that satisfies (B myself (= o ire))

query((age peter ??x)) null

query((age ??y ??x)) [??y=john,??x=20],
[??y=mary,??x=19]

query(sunny) []

(set john mary)queryRef(
(some ?y (exists ?x (age ?y ?x))))

(B myself (age john 20))
(B myself sunny)
(B myself (age mary 19))
(B myself (not hot))

JADE Semantics Add-on / March 27-28th, 2008 – p 48 research & development France Telecom Group

querying beliefs (2/2)
 The query(Formula) and queryRef(IdentifyingExpression)

methods may have an additional ArrayList parameter
 If they return null, the array will be filled with a list of believed formulas

that explain why the queried formula or IRE is not believed
(e.g. this mechanism is used to generate proper Failure messages)

 Otherwise, the array is not used

query((age peter ??x)) null, because
[(not (B myself (age peter ??x)))]

query((and sunny hot)) null, because
[(B myself (not hot))]

(B myself (age john 20))
(B myself sunny)
(B myself (age mary 19))
(B myself (not hot))

JADE Semantics Add-on / March 27-28th, 2008 – p 49 research & development France Telecom Group

notification of belief changes
 the Observer interface defines

 a pattern of formula to monitor
 a Java code to execute as soon as this pattern becomes believed

 EventCreationObserver implementation
 the code to execute calls interpret on a given formula (“event”)
 the observer may be permanent or “one shot”

 useful methods of the KBase interface
 addObserver(Observer)
 removeObserver(Observer)

interpret(
(I myself (B a2 (age john 20))))

assertFormula
((age john 20))

(B myself sunny)
(B myself (age mary 19))

when (age john ??x)
interpret((I myself (B a2 (age john ??x))))

JADE Semantics Add-on / March 27-28th, 2008 – p 50 research & development France Telecom Group

implementing a belief base
 developers may implement their own BB (according to the

KBase interface)
hard task!

 the JSA comes with a default BB, which provides a good
trade-off between efficiency and expressiveness

class MySematicCapabilities extends SemanticCapabilities {
 protected KBase setupKbase() {

KBase base;
base = new MyKBase(...);
...
return base;

 }
 ...
}

KBase base;
base = super.setupKbase();
...
return base;

JADE Semantics Add-on / March 27-28th, 2008 – p 51 research & development France Telecom Group

default belief base (1/2)
 the jade.semantics.kbase.FilterKBase interface is based on a

filter mechanism to manage
 the storage and consistency of beliefs (assertion operations)
 the retrieval of beliefs (query operations)

 a set of standard filters handles the generic FIPA-SL
predicates and logical operators

 specific filters must be added to manage the storage, the
consistency and the retrieval of applicative predicates

protected KBase setupKbase() {
FilterKBase base = (FilterKBase)super.setupKbase();
base.addKBAssertFilter(myAssertFilter);
base.addKBQueryFilter(myQueryFilter);
...
return base;

}

JADE Semantics Add-on / March 27-28th, 2008 – p 52 research & development France Telecom Group

default belief base (2/2)
 use class jade.semantics.kbase.FiltersDefinition to add a set

of filters (assertion filters, query filters or both)
 share filters between several semantic agents
class MyFilters extends FiltersDefinition {
 MyFilters() {

defineFilter(myAssertFilter);
defineFilter(myQueryFilter);
...

 }
}
protected KBase setupKbase() {

FilterKBase base = (FilterKBase)super.setupKbase();
base.addFiltersDefinition(new MyFilters());
return base;

}

JADE Semantics Add-on / March 27-28th, 2008 – p 53 research & development France Telecom Group

assertion filters
 jade.semantics.kbase.filter.KBAssertFilter

 the apply(Formula) method modifies
the formula to assert into the BB

 if not applicable, return null
 to block the assertion,

return the true formula
 KBAssertFilterAdapter

 applicability determined
by a pattern

 override the doApply(Formula)
method instead of apply

myKBase.assert(f)

KBAssertFilter 1
apply(f)

KBAssertFilter 2
apply(f1)

KBAssertFilter n
apply(fn-1)

formula actually
asserted = fn

f1

f2

fn

...
fn-1

JADE Semantics Add-on / March 27-28th, 2008 – p 54 research & development France Telecom Group

query filters
 jade.semantics.kbase.filter.KBQueryFilterAdapter

 applicability determined by a pattern
 the doApply(Formula f) method returns

• null if f is not believed
• a MatchResult including

a list of (MR, value) such
that f is believed

myKBase.query(f)

KBQueryFilterAdapter 1
doApply(f)

KBQueryFilterAdapter 2
doApply(f)

KBQueryFilterAdapter nresult = concatenation
of all non-null ri

r1

r2

rn

...
rn-1

go on?

go on?

go on?

doApply(f)

n

usual query
of the base

n

n

y

y

yr'

JADE Semantics Add-on / March 27-28th, 2008 – p 55 research & development France Telecom Group

query filters: a step further
 the KBQueryFilterAdapter class has limits

 cannot control the filter applicability (entirely determined by the pattern)
 cannot return more than one solution (only one MatchResult object

returned by the doApply method)
 the KBQueryFilter is more general

 method apply(Formula f) instead of doApply(Formula f)
 the goOn boolean parameter controls if further filters may be applied
 returns a QueryResult object

• null if f is not believed
• otherwise, wraps a list of MatchResult that make f believed

 method getObserverTriggerPatterns(Formula,Set)
in order to optimize the notification mechanism of the BB

 improvements of KBQueryFilter expected in future versions

JADE Semantics Add-on / March 27-28th, 2008 – p 56 research & development France Telecom Group

predefined filters
 gathered in the jade.semantics.kbase.filters.std package

 assertion and query sub-packages: generic SL operators
 builtin sub-package: useful (non standard) predicates (easy to extend)
 CFPFilters: assertion and query of proposals (involved in CFP

protocols)
 EventMemoryFilters: assertion and query of (done act)
 HornClauseFilter: query of (implies (and a1 a2 ... an) c)
 NestedBeliefFilters: assertion and query of beliefs on other agents’

beliefs (B myself (B other p))

 defined in the DefaultFilterKBaseLoader class
 NestedBeliefFilters not included by default

JADE Semantics Add-on / March 27-28th, 2008 – p 57 research & development France Telecom Group

built-in predicates and functions
 link between predicates and functions

 (functor p1 p2 ... pn) is true iff (= (functor p1 ... pn-1) pn) is true
 predicate symbol function symbol

 list of the currently predefined predicates
 (< +constant1 +constant2) (< "bar" "foo")

• idem with <= (<= "bar" "bar")
 (member ±element +set_or_sequence) (member foo (set foo bar))
 (nth ±index ±element +sequence) (nth 0 foo (sequence foo bar))

 (* +n1 +n2 ±result) (* 3 2 6)
• idem with +, - and / (* (+ 2 1) (- 3 5) -6)

 (concat +string1 +string2 ±result) (concat "foo" "bar" "foobar")
 (now -current_date) (now 20080327T163045000)
 (card +set_or_sequence ±n) (card (set foo bar) 2)

pr
ed

ic
at

es
fu

nc
tio

ns

JADE Semantics Add-on / March 27-28th, 2008 – p 58 research & development France Telecom Group

connection to a SQL database
 basic principle

 independent API: jade.semantics.ext.sqlwrapper.sqltool.SQLTools

JSA belief base

SQL
query
filter

SQL
assertion

filter

query
queryRefQuery

Result

assertFormula

SQL select statement

SQL result

SQL insert/update statement

SQL
databases

JADE Semantics Add-on / March 27-28th, 2008 – p 59 research & development France Telecom Group

SQL service
manage a database from a JSA agent

 specific semantic actions
 (ADD_SQL_SERVICE :name idName

 :driver javaClassForTheSQLDriver
 :path accessPathToTheDataBase
 :user loginToEnterTheDataBase
 :pass password)

 (REMOVE_SQL_SERVICE :name idName)
 (ADMIN_SERVICE :sqlservice idNameOfTheSQLService

[:cleantable setOfTablesToClean]
[:deletetable setOfTablesToDelete])

 may be “semantically” performed (e.g. upon another agent’s
request) or directly invoked by methods of the SQLTools
class

 createSQLService, removeSQLService, AdminSQLService

JADE Semantics Add-on / March 27-28th, 2008 – p 60 research & development France Telecom Group

SQL service
example

 (ADD_SQL_SERVICE
:name myservice
:driver com.mysql.jdbc.Driver
:path jdbc:mysql://localhost/testsql
:user root
:pass "")

 (ADMIN_SQL_SERVICE
:sqlservice myservice
:cleantable (set table1 table2))

 (ADMIN_SQL_SERVICE
:sqlservice myservice
:deletetable all)

JADE Semantics Add-on / March 27-28th, 2008 – p 61 research & development France Telecom Group

SQL mapping
link SL predicates to SQL requests

 (ADD_SQL_MAPPING :sqlservice idNameOfTheSQLService
 :formula SLpatternToLink
[:createtable on]
[:mappings setOfMappings]
[:innerjoins setOfJoins])

 (REMOVE_SQL_MAPPING :sqlservice idNameOfTheSQLService
 :formula SlpatternToLink)

 mappings between the meta-references and the SQL tables
 (MAPPING :metavar v :sqlref table.column [:type SQLType])

 inner joins between several SQL tables
 (INNERJOIN :primary table1.column1 :associat table2.column2)

 direct invocation by methods of the SQLTools class
 createSQLmapping, removeSQLmapping

JADE Semantics Add-on / March 27-28th, 2008 – p 62 research & development France Telecom Group

(ADD_SQL_MAPPING
 :createtable on
 :formula "(user ??x ??y)"
 :mappings (set
 (MAPPING:metavar x

:sqlref prenom.value)
 (MAPPING:metavar y

:sqlref nom.value))
 :innerjoins (set
 (INNERJOIN :primary prenom.id
 :associat user.id_p)
 (INNERJOIN :primary nom.id
 :associat user.id_n))
)

SQL mapping
example

user
id_p id_n

prenom
id value

nom
id value

durand
dupont

marie
pierre

1
0

1
0

00
10

(user ??x ??y)

[??x=pierre, ??y=durand]
[??x=pierre, ??y=dupont]

??x ??y

0

JADE Semantics Add-on / March 27-28th, 2008 – p 63 research & development France Telecom Group

album application – exercise 3
coding a query filter
 within the album agent

 remove the TickerBehaviour and the content of the setup() method
 create a KBQueryFilterAdapter, which reads the content of queried

pictures from their URL and not from the BB
 within the viewer agent

 remove the subscribe sending
 fill the query-ref content from the URL given by the agent's argument

query-ref ((any ?x (image-content file://... ?x)))

inform (image-content file://... #n"...)

album viewer

JADE Semantics Add-on / March 27-28th, 2008 – p 64 research & development France Telecom Group

album application – exercise 3.bis
coding an assertion filter
 within the viewer agent

 create a KBAssertFilterAdapter, which prevents actual assertion of
image contents into the BB

 request the viewer agent with a dummy agent
to check the former knows no image content any longer

viewer

query-ref ((any ?x (image-content ...)))

inform (image-content file://... #n"...)

album

JADE
dummy
agent

inform
???

JADE Semantics Add-on / March 27-28th, 2008 – p 65 research & development France Telecom Group

4defining semantic agents' behaviour
• semantic actions
• customizing standard SIPs
• using SIP adapters

JADE Semantics Add-on / March 27-28th, 2008 – p 66 research & development France Telecom Group

semantic actions
 formal representations of a semantic agent's elementary

“know-how”
 feasibility precondition (SL formula): must

be true just before the action performance
if not true, the action is considered not feasible
and any attempt to perform it fails

 postcondition (SL formula): will be true
just after the action performance
if the action is successfully performed, the
postcondition is asserted into the BB

 body (JADE behaviour): “concrete” code to perform the action
 stored in the SemanticActionTable of each semantic agent

 includes all FIPA-ACL communicative acts (by default)
 plus application-specific actions (to be defined by developers)

activities

semantic
actions

add
query

JADE Semantics Add-on / March 27-28th, 2008 – p 67 research & development France Telecom Group

application-specific semantic actions
 extend semantic agents' “know-how”
 used by planning-related SIPs

 standard ones: ActionPerformance, RationalityPrinciple
 applicative ones: subclasses of PlanningSIPAdapter

 coding

class MySematicCapabilities extends SemanticCapabilities {
 protected SemanticActionTable setupSemanticAction() {

SemanticActionTable table=super.setupSemanticAction();
table.addSemanticAction(myAction);
...
return table;

 }
 ...
}

JADE Semantics Add-on / March 27-28th, 2008 – p 68 research & development France Telecom Group

defining applicative semantic actions
 construct OntologicalAction with

 an action expression, which
• specifies the pattern of functional

term that represents the action
• may include MRs
(lock :what ??o (::? :delay ??d))

 two SL formulas, which
• specify a precondition and a postcondition
• may include the MRs occurring in the action

expression (if needed,
??actor represents the
 actor of the action)

(owns-a-key ??actor ??o)
(locked ??o)

 when an action is performed (scheduled in a JADE behaviour)
 the BB is queried before performance to check the precondition
 the postcondition is asserted into the BB after performance

JADE Semantics Add-on / March 27-28th, 2008 – p 69 research & development France Telecom Group

defining the body of a semantic action
 SemanticBehaviour maintain a state of performance...

 when the performance fails
• FEASIBILITY_FAILURE

unsatisfied precondition
• EXECUTION_FAILURE

failure during execution
 when it succeeds: SUCCESS

 ...to manage the execution of
semantic actions (inc. comm. acts)

 Case of applicative actions
 the action() method of

OntoActionBehaviour is defined
upon the perform() method of the
corresponding OntologicalAction

 same programming style as the action() method of JADE Behaviour

JADE Semantics Add-on / March 27-28th, 2008 – p 70 research & development France Telecom Group

album application – exercise 4
coding a diaporama semantic action
 within the album agent, implement an ontological action

 consisting in sending to another agent (:viewer parameter) a set of
pictures to display (:images parameter), with an optional delay (:tempo
parameter) between pictures

 within the viewer agent
 send a request on this action instead of the previous query-ref
 the list of pictures is read from the agent's arguments

:tempo 5000 :viewer (agent-identifier ...)))

inform (image-content img #n"aaa...)

album

request ((PLAY-DIAPO :images (set file:///...)

inform (image-content img #n"bbb...)
viewer

JADE Semantics Add-on / March 27-28th, 2008 – p 71 research & development France Telecom Group

customizing standard SIPs (1/3)
 most of standard SIPs may be customized

 add an instance of the proper SIP adapter to the agent's SIP table
 pass proper arguments to the constructor (generally a SL pattern to

match) and/or override the proper method (generally doApply())
 see the jade.semantics.interpreter.sips.adapters package

protected SemanticInterpretationPrincipleTable setupSemanticInterpretationPrinciples() {
table = super.setupSemanticInterpretationPinciples();
table.addSemanticInterpretationPrinciple(

new PlanningSIPAdapter(this, "??goal") {
public ActionExpression doApply(...) {

...
}

}); ...
return table;

}

file://./

JADE Semantics Add-on / March 27-28th, 2008 – p 72 research & development France Telecom Group

customizing standard SIPs (2/3)
 the doApply() method of most of the SIP adapters

 return null if the SIP is finally found not applicable
 provides pre-computed arrays of SR to return,

corresponding to the various possible results of the SIP
 e.g., the BeliefTransferSIPAdapter provides 2 pre-computed results:

one to accept the controlled belief and one to reject it (see below)
ArrayList doApply(MatchResult matchFormula, MatchResult matchAgent,

ArrayList acceptResult, ArrayList refuseResult,
SemanticRepresentation sr) {

if (((Constant)matchAgent.term("agent"))
.stringValue.startsWith("foo"))

 return null; // no control on beliefs from agents named foo*
else if (this.accept()) // use pre-computed results
 return acceptResult;
else return refuseResult;

}

JADE Semantics Add-on / March 27-28th, 2008 – p 73 research & development France Telecom Group

customizing standard SIPs (3/3)
 when the result of the SIP cannot be decided at once

 return an empty array of SR (to “absorb” the input SR)
 install a proper behaviour, which

• makes the decision (for example, by interacting with other agents)
• finally interprets the pre-computed result corresponding to the made decision

 this can be easily done using the interpretAfterPlan method
ArrayList doApply(MatchResult matchFormula, MatchResult matchAgent,
 ArrayList acceptResult, ArrayList refuseResult,
 SemanticRepresentation sr) {

interpretAfterPlan("(; (query-ref foo (iota ?x (reliability ?x)))
(foo inform-ref (iota ?x (reliability ?x)))
(test (> (iota ?x (reliability ?x)) 10)))"

acceptResult, // SRs to interpret if plan success
refuseResult); // SRs to interpret if plan failure

return new ArrayList();
}

JADE Semantics Add-on / March 27-28th, 2008 – p 74 research & development France Telecom Group

belief transfer SIP adapter
 controls the adoption of beliefs coming from other agents
 constructor

 formulaToBelievePattern: the pattern of belief to control
 originatingAgentPattern: the pattern of agent originating the belief to

control (beliefs from other agents will not be controlled by the SIP)
Optional arguments (set to true by default)
 notPattern: if true, also controls the adoption of (not formulaPattern)
 allPattern: if true, also controls (= (all ??X formulaPattern) (set))

 (pattern used to retract all instances of the belief)
 doApply() method

 the first 2 arguments give the results of the matching of the belief to
control and the originating agent against the specified patterns

 acceptResult: array of SR to return if the belief can be adopted
 refuseResult: array of SR to return if the belief must not be adopted

JADE Semantics Add-on / March 27-28th, 2008 – p 75 research & development France Telecom Group

intention transfer SIP adapter
 controls the adoption of intentions of other agents
 constructor

 goalPattern: the pattern of goal (to intend) to control
 agentPattern: the pattern of external agent intending the goal to control

(intentions of other agents will not be controlled by the SIP)
Optional argument (set to true by default)
 feedBackRequired: if true, generates a feedback towards the external

agent
• intention adopted: acknowledges the adoption, then the goal achievement
• intention not adopted: acknowledges the adoption refusal

 doApply() method
 the first 2 arguments give the results of the matching of the goal to

control and the originating agent against the specified patterns
 acceptResult: array of SR to return if the goal can be intended
 refuseResult: array of SR to return if the goal must not be intended

JADE Semantics Add-on / March 27-28th, 2008 – p 76 research & development France Telecom Group

planning SIP adapter
 computes a plan to reach an intended goal
 constructor

 goalPattern: the pattern of goal, for which the SIP may find a plan
 doApply() method

 returns an action expression representing the computed plan
(instead of an array of SR) – if null, the SIP is considered not applicable

 matchResult: result of the matching of the intended goal against the
specified pattern

 the returned plan is performed
 if it ends out to be not feasible, the next matching planning SIP in the

SIP table is tried (in the order of the SIP table) to find a new plan
 several SIPs can be defined (for different goals as well as for

the same goal)

JADE Semantics Add-on / March 27-28th, 2008 – p 77 research & development France Telecom Group

CFP SIP adapter (1/2)
 controls the answer to a CFP
 a CFP expects 2 content elements

 a requested action (expressed as an action expression)
 a condition (expressed as an IRE)

 default adapter constructor (with no argument)
 automatically answers CFPs by evaluating the condition

independently from the action (this is a simplifying assumption)
 regular constructor, to control specific patterns of CFP

 ireQuantifierPattern: the pattern of the IRE quantifier (given as a
constant, see QueryRefPreparationSIPAdapter.ANY/IOTA/SOME/ALL)

 ireVariablesPattern: the pattern of the IRE quantified variables
 conditionPattern: the pattern of the condition formula
 actPattern: the pattern of action
 agentPattern: the pattern of agent (AID) originating the CFP

JADE Semantics Add-on / March 27-28th, 2008 – p 78 research & development France Telecom Group

CFP SIP adapter (2/2)
 prepareProposal() method

 works along the same principle as the doApply() methods
 the first 4 arguments give the elements defining the CFP to control,
 the following 3 arguments give the results of the matching of these

elements against the specified patterns
 result: array of SR to return if the SIP is not absorbent (or to interpret

later if the SIP is absorbent and delays its processing)
 this method is expected to set up in the belief base proper

values of the condition to perform the requested actions
 use the assertProposals() method to do so
 the first 4 arguments give the elements defining the condition/action
 the last argument gives the list of proper values for these

condition/action

JADE Semantics Add-on / March 27-28th, 2008 – p 79 research & development France Telecom Group

5concluding remarks and synthesis

JADE Semantics Add-on / March 27-28th, 2008 – p 80 research & development France Telecom Group

what about protocols,
conversation-id, ...?

 semantic agents genuinely interpret received messages
 such an interpretation is consistent with FIPA interaction protocols

 handling complex protocols, such as CFP, consists
in specializing the proper SIP adapter(s)

 such an interpretation is more flexible, so that agents may naturally
engage in intermediate exchanges, without the need of making them
explicit in a protocol specification

 no need to make the used protocol explicit

 no need to make the conversation-id explicit

JADE Semantics Add-on / March 27-28th, 2008 – p 81 research & development France Telecom Group

and ontologies?
 there is no explicit support for a specific ontology model
 developers have to define the way of representing classes,

properties, instances, ... by SL expressions. For example:
 SL functional terms may represent frames with slots

• (Person :name john :age 20)
• use the setParameter(String,Term) and getParameter(String,Term) methods

to handle directly slot values
• see also the jade.semantics.kbase.FunctionalTable class (experimental)

 SL predicates generally represent properties
• (hasFather i1 i2), (is_a i1 Person), (subclass Mother Female), ...

 no ContentManager, because the JSA automatically analyses
the content of incoming messages

 under study: a “mapper” between JADE ontologies and SL
patterns (for reusing some JADE features with the JSA)

JADE Semantics Add-on / March 27-28th, 2008 – p 82 research & development France Telecom Group

differences between JADE and JSA
 an empty JSA agent is not so empty

it can react properly to many requests

 SL is the “internal” language to programme JSA agents
take advantage of the SL pattern mechanisms

 Basic programming advices

1. Never use the receive() method, avoid the send() method

2. Programme your agent's observable behaviours through SIPs

3. Programme your agent's skills through semantic actions

4. Reasoning on facts and fact storage are managed by the belief base

