How to use the Bit-efficient ACL encoding with JADE http://jade.tilab.convdoc/tutorials/BEFipaMessage.html

1z3

How to use the Bit-efficient ACL (BE-ACL)
encoding with JADE

Author: Heikki Helin (Sonera), Mikko Laukkanen (Sonera),

Date: March 29, 2001
Java platform: Sun JDK 1.2 Linux
JADE version 2.2

Since JADE 2.2, FIPA-ACL Message codecs can be plugged and activated via the command
line on any JADE container. By default, the platform uses a String ACL codec However,
Bit-efficient codec can be used as an alternative FIPA-ACL encoding. This tutorial describes
how to install and use the the bit-efficient ACL codec with JADE. The bit-efficient ACL
codec is implementation of experimental FIPA standard number 00069 (FIPA ACL Message
Representation in Bit-Efficient Specification).

Installation

In order to install BE-ACL the following steps must be performed:

e The BE-ACL must be downloaded from the JADE download page.
e after downloading you MUST unzip the BE-ACL package under the root of the jade
distribution tree. You should end having a hierarchy like jade/add-ons/BEFipaMessage

Compiling

The Jade Makefile rules don't take the BE-ACL into account. For handling the compilation
process of the BE-ACL you have to use the 'build.xml' ant-file located in the BEFipaMessage
directory. The following rules are available:

ant compile - compiles the BE-ACL classes

ant lib - creates the BEFipaMessage.jar archive

ant clean - removes the compiled classes and the .jar archive
ant doc - creates javadoc of BE-ACL

ant examples - compiles the BE-ACL examples.

Configuration and Usage

In order to use BE-ACL codec, the BEFipaMessage.jar must be added to the classpath when
starting(either by including it into the SCLASSPATH environment variable -
%CLASSPATH% under windows or by specifying it on the command line). Notice that the
BE-ACL codec must be launched on all the JADE containers

20. 3.2016 20:27

How to use the Bit-efficient ACL encoding with JADE http://jade.tilab.convdoc/tutorials/BEFipaMessage.html

273

Here is an example of how you would start the platform assuming you are in the root of the
Jade directory:

java -classpath ./lib/jade.jar:./lib/jadeTools.jar:./lib/iiop.jar:./add-ons
/BEFipaMessage/lib/BEFipaMessage.jar jade.Boot -aclcodec

sonera.fipa.acl.BitEffACLCodec(ﬁMTLHﬂX)

or
java -classpath ./lib/jade.jar;./lib/jadeTools.jar;./lib/iiop.jar;./add-ons
/BEFipaMessage/lib/BEFipaMessage.jar jade.Boot -aclcodec

sonera.fipa.acl.BitEffACLCodec (fOI’ Windows)

More aclcodecs can be indicated separated by a ;'

Examples

Using BE-ACL in Jade

When an agent wants to send a bit-efficiently encoded message, all it has to do is to indicate
this in the message envelope. For example (assuming e is the message envelope):

e.setAclRepresentation("fipa.acl.rep.bitefficient.std");

and Jade takes care of the rest. When receiving bit-efficiently encoded messages, the agent
does not have to do anything, Jade is working for him.

Using off-line examples

The BE-ACL package comes with simple off-line Encoder and Decoder that can be used to
explore features BE-ACL encoding. The DummyEncoder reads ACL messages from standard
input and writes bit-efficiently encoded messages to standard output. For example, assume
that file test.msg contains one or more ACL messages encoded using string-based
representation, then

java DummyEncoder < test.msg > be.msg

encodes these messages to file be.msg. (Notice that BEFipaMessage.jar and jade.jar must be
added to the classpath).

Similarly, the DummyDecoder reads bit-efficiently encoded messages from standard input and
writes the messages to standard output using string-based encoding. For example,

java DummyDecoder < be.msg > new.msg

writes the messages to file new.msg. The contents of test.msg and new.nsg should be the same.
However, this is not necessarily true.e The number of white space might be different as well
as the order of message parameters (if new.nsg is encoded and decoded again, then the new
result should be exactly the same).

By default, these applications does not use dynamic codetable. However, it is possible to give
an additional command line parameter to each of these programs that defines the size of the
code table. For example:

20. 3.2016 20:27

How to use the Bit-efficient ACL encoding with JADE http://jade.tilab.convdoc/tutorials/BEFipaMessage.html

3z3

java DummyEncoder 9 < test.msg > be.msg

and

java DummyDecoder 9 < be.msg > new.msg

In the example above, code table size 9 is used (i.e., 2”9 entries in the code table). The size
must be between 8 and 16. Notice that exactly same code table size must be given to both
applications, otherwise decoding fails.

JADE is a trademark of CSELT. JADE has been developed jointly by CSELT and the Computer
Engineering Group of the University of Parma.
The BE-ACL codec implementation was developed by Sonera Corporation.

20. 3.2016 20:27

